On Brennan's Conjecture for a Special Class of Functions
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 537-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove Brennan's conjecture for conformal mappings $f$ of the disk $\{z:|z|1\}$ assuming that the Taylor coefficients of the function $\log(zf'(z)/f(z))$ at zero are nonnegative. We also obtain inequalities for the integral means over the circle $|z|=r$ of the squared modulus of the function $zf'(z)/f(z)$.
@article{MZM_2005_78_4_a4,
     author = {I. R. Kayumov},
     title = {On {Brennan's} {Conjecture} for a {Special} {Class} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {537--541},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - On Brennan's Conjecture for a Special Class of Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 537
EP  - 541
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/
LA  - ru
ID  - MZM_2005_78_4_a4
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T On Brennan's Conjecture for a Special Class of Functions
%J Matematičeskie zametki
%D 2005
%P 537-541
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/
%G ru
%F MZM_2005_78_4_a4
I. R. Kayumov. On Brennan's Conjecture for a Special Class of Functions. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 537-541. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/

[1] Brennan J. E., “On the integrability of the derivative in conformal mapping”, J. London Math. Soc. (2), 18 (1978), 261–272 | DOI | MR | Zbl

[2] Pommerenke Ch., “On the integral means of the derivative of a univalent function”, J. London Math. Soc. (2), 32 (1985), 254–258 | DOI

[3] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32 (1994), 33–62 | DOI | MR | Zbl

[4] Bertilsson D., On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Inst. of Tech., Stockholm, 1999 | Zbl

[5] Barański K., Volberg A., Zdunik A., “Brennan's conjecture and the Mandelbrot set”, Intern. Math. Res. Notices, 12 (1998), 589–600 | DOI | Zbl

[6] Kayumov I. R., Integral means and the law of the iterated logarithm, Preprint No. 8, Institut Mittag-Leffler, Sweden, 2002

[7] Milin I. M., Odnolistnye funktsii i ortonormirovannye sistemy, Nauka, M., 1971 | Zbl

[8] Bazilevich I. E., “Ob odnom kriterii odnolistnosti regulyarnykh funktsii i dispersii ikh koeffitsientov”, Matem. sb., 74:1 (1967), 133–146 | Zbl