On Brennan's Conjecture for a Special Class of Functions
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 537-541

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove Brennan's conjecture for conformal mappings $f$ of the disk $\{z:|z|1\}$ assuming that the Taylor coefficients of the function $\log(zf'(z)/f(z))$ at zero are nonnegative. We also obtain inequalities for the integral means over the circle $|z|=r$ of the squared modulus of the function $zf'(z)/f(z)$.
@article{MZM_2005_78_4_a4,
     author = {I. R. Kayumov},
     title = {On {Brennan's} {Conjecture} for a {Special} {Class} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {537--541},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - On Brennan's Conjecture for a Special Class of Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 537
EP  - 541
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/
LA  - ru
ID  - MZM_2005_78_4_a4
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T On Brennan's Conjecture for a Special Class of Functions
%J Matematičeskie zametki
%D 2005
%P 537-541
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/
%G ru
%F MZM_2005_78_4_a4
I. R. Kayumov. On Brennan's Conjecture for a Special Class of Functions. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 537-541. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a4/