On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 519-536

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of the exact order of decrease of uniform moduli of smoothness for the classes of $2\pi$-periodic functions of several variables with a given majorant of the sequence of total best approximations in the metric of $L_p$, $1\le p\infty$.
@article{MZM_2005_78_4_a3,
     author = {N. A. Il'yasov},
     title = {On the {Order} of {Decrease} of {Uniform} {Moduli} of {Smoothness} for the {Classes} of {Functions} $E_{p,m}[\epsilon]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--536},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 519
EP  - 536
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/
LA  - ru
ID  - MZM_2005_78_4_a3
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
%J Matematičeskie zametki
%D 2005
%P 519-536
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/
%G ru
%F MZM_2005_78_4_a3
N. A. Il'yasov. On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 519-536. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/