On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 519-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of the exact order of decrease of uniform moduli of smoothness for the classes of $2\pi$-periodic functions of several variables with a given majorant of the sequence of total best approximations in the metric of $L_p$, $1\le p\infty$.
@article{MZM_2005_78_4_a3,
     author = {N. A. Il'yasov},
     title = {On the {Order} of {Decrease} of {Uniform} {Moduli} of {Smoothness} for the {Classes} of {Functions} $E_{p,m}[\epsilon]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--536},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 519
EP  - 536
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/
LA  - ru
ID  - MZM_2005_78_4_a3
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$
%J Matematičeskie zametki
%D 2005
%P 519-536
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/
%G ru
%F MZM_2005_78_4_a3
N. A. Il'yasov. On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 519-536. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a3/

[1] Ilyasov N. A., “K obratnoi teoreme teorii priblizhenii periodicheskikh funktsii v raznykh metrikakh”, Matem. zametki, 52:2 (1992), 53–61 | MR

[2] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84

[3] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[4] Temirgaliev N. T., “O svyazi teorem vlozheniya s ravnomernoi skhodimostyu kratnykh ryadov Fure”, Matem. zametki, 12:2 (1972), 139–148 | MR | Zbl

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[6] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | Zbl

[7] Geit V. E., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1972, no. 4, 67–77 | Zbl

[8] Zhuk V. V., “Ob odnom metode summirovaniya ryadov Fure. Ryady Fure s polozhitelnymi koeffitsientami”, Sb. nauchnykh trudov Leningr. mekh. in-ta, no. 50, 1965, 73–92

[9] Boas R. P., “Fourier series with positive coefficients”, J. Math. Anal. Appl., 17:3 (1967), 463–483 | DOI | MR | Zbl

[10] Ilyasov N. A., “O priblizhenii periodicheskikh funktsii srednimi Feiera–Zigmunda v raznykh metrikakh”, Matem. zametki, 48:4 (1990), 48–57

[11] Geit V. E., “O strukturnykh i konstruktivnykh svoistvakh funktsii i ee sopryazhennoi v $L$”, Izv. vuzov. Matem., 1972, no. 7, 19–30 | Zbl

[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[13] Ulyanov P. L., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72:2 (1967), 193–225

[14] Temirgaliev N. T., “Ob odnoi teoreme vlozheniya”, Izv. vuzov. Matem., 1973, no. 7, 103–111 | Zbl

[15] Temirgaliev N. T., “O vlozhenii nekotorykh klassov funktsii v $C([0,2\pi]^m)$”, Izv. vuzov. Matem., 1978, no. 8, 88–90

[16] Kolyada V. I., “Teoremy vlozheniya i neravenstva raznykh metrik dlya nailuchshikh priblizhenii”, Matem. sb., 102:2 (1977), 195–215 | Zbl