Existence Theorem in the Optimal Control Problem on an Infinite Time Interval
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 503-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem on an infinite time interval. The system is linear in the control, the functional is convex in the control, and the control set is convex and compact. We propose a new condition on the behavior of the functional at infinity, which is weaker than the previously known conditions, and prove the existence theorem for the solution under this condition. We consider several special cases and propose a general abstract scheme.
@article{MZM_2005_78_4_a2,
     author = {A. V. Dmitruk and N. V. Kuz'kina},
     title = {Existence {Theorem} in the {Optimal} {Control} {Problem} on an {Infinite} {Time} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--518},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a2/}
}
TY  - JOUR
AU  - A. V. Dmitruk
AU  - N. V. Kuz'kina
TI  - Existence Theorem in the Optimal Control Problem on an Infinite Time Interval
JO  - Matematičeskie zametki
PY  - 2005
SP  - 503
EP  - 518
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a2/
LA  - ru
ID  - MZM_2005_78_4_a2
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%A N. V. Kuz'kina
%T Existence Theorem in the Optimal Control Problem on an Infinite Time Interval
%J Matematičeskie zametki
%D 2005
%P 503-518
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a2/
%G ru
%F MZM_2005_78_4_a2
A. V. Dmitruk; N. V. Kuz'kina. Existence Theorem in the Optimal Control Problem on an Infinite Time Interval. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a2/

[1] Baum R. F., “Existence theorems for Lagrange control problems with unbounded time domain”, J. Optimization Theory Appl., 19 (1976), 89–116 | DOI | MR | Zbl

[2] Magill M., “Infinite horizon programs”, Econometrica, 49 (1981), 679–711 | DOI | MR | Zbl

[3] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[4] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite-Horizon Optimal Control, Springer, Berlin, 1991 | Zbl

[5] Leonard D., Long N. V., Optimal Control Theory and Static Optimization in Economics, Cambridge Univ. Press, Cambridge, 1992 | MR

[6] Zaslavski A. J., “Optimal programs on infinite horizon”, SIAM J. Control Optimization, 33:6 (1995), 1643–1686 | DOI | MR

[7] Zaslavski A. J., “Turnpike property of optimal solutions of infinite-horizon variational problems”, SIAM J. Control Optimization, 35:4 (1997), 1169–1203 | DOI | Zbl

[8] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser. matem., mekh., astron., fiz., khim., 1959, no. 2, 25–32 | Zbl

[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | Zbl

[10] Cesari L., Optimization: Theory and Applications, Springer, New York, 1983

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | Zbl

[12] Ioffe A. D., “On lower semicontinuity of integral functions”, SIAM J. Control Optimization, 15 (1977), 521–538 | DOI | Zbl

[13] Olech C., “Weak lower semicontinuity of integral functions”, J. Optimization Theory Appl., 15 (1976), 3–16 | DOI