Attainability of the Exponent of Exponential Growth in Free Products of Cyclic Groups
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 614-618
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the set of exponents of exponential growth (growth exponents) for a finitely generated group with respect to all possible generators of this group is studied. It is proved that the greatest lower bound of this set is attained for the free products of a cyclic group of prime order and a free group of finite rank.
@article{MZM_2005_78_4_a11,
author = {A. L. Talambutsa},
title = {Attainability of the {Exponent} of {Exponential} {Growth} in {Free} {Products} of {Cyclic} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {614--618},
year = {2005},
volume = {78},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a11/}
}
A. L. Talambutsa. Attainability of the Exponent of Exponential Growth in Free Products of Cyclic Groups. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 614-618. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a11/
[1] de la Harpe P., Topics in Geometric Group Theory, Univ. of Chicago Press, Chicago, 2000 | MR
[2] Sambusetti A., “Minimal growth of non-Hopfian free products”, C. R. Acad. Sci. Paris Sér. I, 329 (1999), 943–946 | MR | Zbl
[3] Arzhantseva G., Lysionok I., “Growth tightness for word hyperbolic groups”, Math. Z., 241 (2002), 597–611 | DOI | MR | Zbl
[4] Wilson J. S., “On exponential and uniformly exponential growth for groups”, Invent. Math., 155:2 (2004), 287–303 | DOI | MR | Zbl
[5] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[6] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl