Linear and Algebraic Independence of $q$-Zeta Values
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 608-613
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, results on linear and algebraic independence of $q$-series of the form $\zeta_q(s)=\sum_{n=1}^\infty\sigma_{s-1}(n)q^n$ over the field $\mathbb C(q)$ are obtained, where $\sigma_{s-1}(n)=\sum_{d\mid n}d^{s-1}$, $s=1,2,\dots$.
@article{MZM_2005_78_4_a10,
author = {Yu. A. Pupyrev},
title = {Linear and {Algebraic} {Independence} of $q${-Zeta} {Values}},
journal = {Matemati\v{c}eskie zametki},
pages = {608--613},
year = {2005},
volume = {78},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/}
}
Yu. A. Pupyrev. Linear and Algebraic Independence of $q$-Zeta Values. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 608-613. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/
[1] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl
[2] Zudilin V. V., “O diofantovykh zadachakh dlya $q$-dzeta-znachenii”, Matem. zametki, 72:6 (2002), 936–940 | MR | Zbl
[3] Nesterenko Yu. V., O transtsendentnosti nekotorykh funktsii, Rukopis, 2003