Linear and Algebraic Independence of $q$-Zeta Values
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 608-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, results on linear and algebraic independence of $q$-series of the form $\zeta_q(s)=\sum_{n=1}^\infty\sigma_{s-1}(n)q^n$ over the field $\mathbb C(q)$ are obtained, where $\sigma_{s-1}(n)=\sum_{d\mid n}d^{s-1}$, $s=1,2,\dots$.
@article{MZM_2005_78_4_a10,
     author = {Yu. A. Pupyrev},
     title = {Linear and {Algebraic} {Independence} of $q${-Zeta} {Values}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {608--613},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/}
}
TY  - JOUR
AU  - Yu. A. Pupyrev
TI  - Linear and Algebraic Independence of $q$-Zeta Values
JO  - Matematičeskie zametki
PY  - 2005
SP  - 608
EP  - 613
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/
LA  - ru
ID  - MZM_2005_78_4_a10
ER  - 
%0 Journal Article
%A Yu. A. Pupyrev
%T Linear and Algebraic Independence of $q$-Zeta Values
%J Matematičeskie zametki
%D 2005
%P 608-613
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/
%G ru
%F MZM_2005_78_4_a10
Yu. A. Pupyrev. Linear and Algebraic Independence of $q$-Zeta Values. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 608-613. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a10/

[1] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl

[2] Zudilin V. V., “O diofantovykh zadachakh dlya $q$-dzeta-znachenii”, Matem. zametki, 72:6 (2002), 936–940 | MR | Zbl

[3] Nesterenko Yu. V., O transtsendentnosti nekotorykh funktsii, Rukopis, 2003