Existence Criterion for Estimates of Derivatives of Rational Functions
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 493-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $K$ is a compact set in the open complex plane. In this paper, we prove an existence criterion for an estimate of Markov–Bernstein type for derivatives of a rational function $R(z)$ at any fixed point $z_0\in K$. We prove that, for a fixed integer $s$, the estimate of the form $|R^{(s)}(z_0)|\le C(K,z_0,s)n\|R\|_{C(K)}$, where $R$ is an arbitrary rational function of degree $n$ without poles on $K$ and $C$ is a bounded function depending on three arguments $K$, $z_0$, and $s$, holds if and only if the supremum $\omega(K,z_0,s)=\sup\{\operatorname{dist}(z,K)/|z-z_0|^{s+1}\}$ over $z$ in the complement of $K$ is finite. Under this assumption, $C$ is less than or equal to $\mathrm{const}\cdot s!\,\omega(K,z_0,s)$.
@article{MZM_2005_78_4_a1,
     author = {V. I. Danchenko},
     title = {Existence {Criterion} for {Estimates} of {Derivatives} of {Rational} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {493--502},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a1/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Existence Criterion for Estimates of Derivatives of Rational Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 493
EP  - 502
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a1/
LA  - ru
ID  - MZM_2005_78_4_a1
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Existence Criterion for Estimates of Derivatives of Rational Functions
%J Matematičeskie zametki
%D 2005
%P 493-502
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a1/
%G ru
%F MZM_2005_78_4_a1
V. I. Danchenko. Existence Criterion for Estimates of Derivatives of Rational Functions. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a1/

[1] Gonchar A. A., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Dokl. AN SSSR, 100 (1955), 205–208 | Zbl

[2] Dolzhenko E. P., “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4:4 (1978), 247–268 | DOI

[3] Gonchar A. A., “Obratnye teoremy o nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 25 (1961), 347–356 | Zbl

[4] Dolzhenko E. P., “Otsenki proizvodnykh ratsionalnykh funktsii”, Izv. AN SSSR. Ser. matem., 27:1 (1963), 9–28

[5] Danchenko V. I., Danchenko D. Ya., “Odin kriterii suschestvovaniya otsenki bernshteinovskogo tipa dlya proizvodnoi ratsionalnoi funktsii”, Trudy 10-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 2000, 39–40

[6] Danchenko D. Ya., Nekotorye voprosy approksimatsii i interpolyatsii ratsionalnymi funktsiyami. Prilozhenie k uravneniyam ellipticheskogo tipa, Diss. ... k.f.-m.n., Vladimirskii gos. ped. un-t, Vladimir, 2001

[7] Gonchar A. A., Grigoryan L. D., “Ob otsenke komponent ogranichennykh analiticheskikh funktsii”, Matem. sb., 132 (1987), 299–303 | MR | Zbl

[8] Carleson L., “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76 (1962), 547–559 | DOI | Zbl

[9] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[10] Pekarskii A. A., “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR. Ser. fiz.-matem., 1990, no. 6, 9–14 | MR | Zbl

[11] Pekarskii A. A., “Nailuchshie ratsionalnye approksimatsii v kompleksnoi oblasti”, Tr. MIAN, 190, Nauka, M., 1989, 222–233

[12] Dynkin E. M., “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR

[13] Danchenko V. I., “O ratsionalnykh sostavlyayuschikh meromorfnykh funktsii i ikh proizvodnykh”, Anal. Math., 16:4 (1990), 241–255 | DOI | Zbl