Approximation of Subharmonic Functions in the Half-Plane by the Logarithm of the Modulus of an Analytic Function
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 483-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

We approximate subharmonic functions defined in the open half-plane in the uniform metric outside the exceptional set by the logarithm of the modulus of an analytic (in the half-plane) function for the cases of a finite order and of an infinite lower order. We also obtain an estimate for the size of the exceptional set. It is shown that, in the case of a finite order, the obtained accuracy of the approximation cannot be essentially improved.
@article{MZM_2005_78_4_a0,
     author = {M. A. Hirnyk},
     title = {Approximation of {Subharmonic} {Functions} in the {Half-Plane} by the {Logarithm} of the {Modulus} of an {Analytic} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--492},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a0/}
}
TY  - JOUR
AU  - M. A. Hirnyk
TI  - Approximation of Subharmonic Functions in the Half-Plane by the Logarithm of the Modulus of an Analytic Function
JO  - Matematičeskie zametki
PY  - 2005
SP  - 483
EP  - 492
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a0/
LA  - ru
ID  - MZM_2005_78_4_a0
ER  - 
%0 Journal Article
%A M. A. Hirnyk
%T Approximation of Subharmonic Functions in the Half-Plane by the Logarithm of the Modulus of an Analytic Function
%J Matematičeskie zametki
%D 2005
%P 483-492
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a0/
%G ru
%F MZM_2005_78_4_a0
M. A. Hirnyk. Approximation of Subharmonic Functions in the Half-Plane by the Logarithm of the Modulus of an Analytic Function. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a0/

[1] Azarin V. S., “O luchakh vpolne regulyarnogo rosta tseloi funktsii”, Matem. sb., 79 (121):4 (8) (1969), 463–476 | MR | Zbl

[2] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[3] Drasin D., “Approximation of subharmonic functions with applications”, Approximation, Complex Analysis, and Potential Theory, Proc. of the NATO ASI (Montreal, Canada, 3–14 July 2000), Kluwer Acad. Publ., Dordrecht–Boston–London, 2001, 163–189 | MR | Zbl

[4] Chyzhykov I., “Approximation of subharmonic functions of slow growth”, Matem. fiz., analiz, geom., 9:3 (2002), 509–520 | MR | Zbl

[5] Hayman W. K., Kennedy P. B., Subharmonic Functions, V. 1, Academic Press, London–New York–San Francisco, 1976

[6] Girnyk M. A., “O priblizhenii subgarmonicheskoi funktsii beskonechnogo poryadka logarifmom modulya tseloi funktsii”, Matem. zametki, 50:4 (1991), 57–60

[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | Zbl

[8] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970

[9] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973