Rational Approximations of Riemann--Liouville and Weyl Fractional Integrals
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 428-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact rational approximation orders for functions expressible as Riemann–Liouville and Weyl fractional integrals. New results and the strengthening and generalization of theorems due to Popov, Petrusheva, Pekarskii, Rusak, and the author, which are well known in the theory of rational approximation of differentiable functions, are obtained as consequences of theorems due to Pekarskii related to rational approximation of functions from the Hardy–Sobolev classes in the unit disk.
@article{MZM_2005_78_3_a9,
     author = {A. P. Starovoitov},
     title = {Rational {Approximations} of {Riemann--Liouville} and {Weyl} {Fractional} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--441},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a9/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Rational Approximations of Riemann--Liouville and Weyl Fractional Integrals
JO  - Matematičeskie zametki
PY  - 2005
SP  - 428
EP  - 441
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a9/
LA  - ru
ID  - MZM_2005_78_3_a9
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Rational Approximations of Riemann--Liouville and Weyl Fractional Integrals
%J Matematičeskie zametki
%D 2005
%P 428-441
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a9/
%G ru
%F MZM_2005_78_3_a9
A. P. Starovoitov. Rational Approximations of Riemann--Liouville and Weyl Fractional Integrals. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 428-441. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a9/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[3] Rusak V. N., “Tochnye poryadki nailuchshikh ratsionalnykh priblizhenii svertki yadra Veilya i funktsii iz $L_p$”, Dokl. AN SSSR, 315:2 (1990), 313–316

[4] Starovoitov A. P., “Tochnye poryadki ratsionalnykh priblizhenii svertki yadra Rimana–Liuvillya i funktsii iz $L_p$”, Dokl. AN Belarusi, 38:1 (1994), 27–30 | MR

[5] Petrushev P. P., Popov V. A., Rational Approximation of Real Functions, Cambridge Univ. Press, Cambridge, 1987 | MR

[6] Popov V. A., “On the connection between rational uniform approximation and polynomial $L_p$ approximation of functions”, Quantitative Approximation, Academic Press, New York, 1980, 267–277 | MR

[7] Pekarskii A. A., Ratsionalnaya approksimatsiya periodicheskikh funktsii v $\widetilde L^p$, Dep. VINITI No. 1209-77, VINITI, M., 1977

[8] Pekarskii A. A., Ratsionalnaya approksimatsiya i prostranstva Orlicha, Dep. VINITI No. 314-78, VINITI, M., 1978

[9] Lyashko I. I., Boyarchuk A. K., Gai Ya. G., Golovach G. P., Matematicheskii analiz v primerakh i zadachakh, T. 2, Vischa shkola, Kiev, 1977

[10] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[11] Pekarskii A. A., “Skorost ratsionalnoi approksimatsii i differentsialnye svoistva funktsii”, Anal. Math., 17 (1991), 153–171 | DOI

[12] Petrushev P. P., “Ravnomernye ratsionalnye approksimatsii funktsii klassa $V_r$”, Matem. sb., 108 (150):3 (1979), 419–432

[13] Starovoitov A. P., “Ratsionalnaya approksimatsiya funktsii iz $W^rV[a,b]$”, Tr. seminara In-ta prikladnoi matem. im. I. N. Vekua Tbilisskogo gosuniversiteta, 1:2 (1985), 129–133

[14] Rusak V. N., “Tochnye poryadkovye otsenki dlya nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Matem. sb., 128 (170):4 (1985), 492–515

[15] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73(115):4 (1967), 630–638 | MR | Zbl

[16] Pekarskii A. A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Matem. sb., 124:4 (1984), 571–588

[17] Pekarskii A. A., “Klassy analiticheskikh funktsii, opredelyaemye nailuchshimi ratsionalnymi priblizheniyami v $H_p$”, Matem. sb., 127:1 (1985), 3–20

[18] Lorentz G., v. Golitschek M., Makavoz Y., Constructive Approximation. Advanced Problems, Springer-Verlag, New York–Berlin–Heidelberg, 1996

[19] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975

[20] Rusak V. N., Braiess D., “Nailuchshie polinomialnye i ratsionalnye priblizheniya funktsionalnykh klassov v integralnoi metrike”, Dokl. AN Belarusi, 36:3–4 (1992), 205–208

[21] Starovoitov A. P., “Skorost ratsionalnoi approksimatsii drobnykh integralov Rimana–Liuvillya i Veilya”, Dokl. NAN Belarusi, 47:3 (2003), 18–23