Semilocal Group Algebras
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 409-412

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k[G]$ be a semilocal group algebra. It is shown that if $k$ is an algebraically closed field, then every finitely generated flat $k[G]$-module is projective.
@article{MZM_2005_78_3_a7,
     author = {M. F. Nasrutdinov},
     title = {Semilocal {Group} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--412},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a7/}
}
TY  - JOUR
AU  - M. F. Nasrutdinov
TI  - Semilocal Group Algebras
JO  - Matematičeskie zametki
PY  - 2005
SP  - 409
EP  - 412
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a7/
LA  - ru
ID  - MZM_2005_78_3_a7
ER  - 
%0 Journal Article
%A M. F. Nasrutdinov
%T Semilocal Group Algebras
%J Matematičeskie zametki
%D 2005
%P 409-412
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a7/
%G ru
%F MZM_2005_78_3_a7
M. F. Nasrutdinov. Semilocal Group Algebras. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 409-412. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a7/