Nonlinear Averages in Economics
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 377-395

Voir la notice de l'article provenant de la source Math-Net.Ru

Kolmogorov nonlinear averaging is complemented by a natural axiom. For this averaging, we prove a theorem on large deviations as well as establish the relationship to the tunnel canonical operator.
@article{MZM_2005_78_3_a5,
     author = {V. P. Maslov},
     title = {Nonlinear {Averages} in {Economics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {377--395},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Nonlinear Averages in Economics
JO  - Matematičeskie zametki
PY  - 2005
SP  - 377
EP  - 395
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/
LA  - ru
ID  - MZM_2005_78_3_a5
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Nonlinear Averages in Economics
%J Matematičeskie zametki
%D 2005
%P 377-395
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/
%G ru
%F MZM_2005_78_3_a5
V. P. Maslov. Nonlinear Averages in Economics. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 377-395. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/