Nonlinear Averages in Economics
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 377-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kolmogorov nonlinear averaging is complemented by a natural axiom. For this averaging, we prove a theorem on large deviations as well as establish the relationship to the tunnel canonical operator.
@article{MZM_2005_78_3_a5,
     author = {V. P. Maslov},
     title = {Nonlinear {Averages} in {Economics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {377--395},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Nonlinear Averages in Economics
JO  - Matematičeskie zametki
PY  - 2005
SP  - 377
EP  - 395
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/
LA  - ru
ID  - MZM_2005_78_3_a5
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Nonlinear Averages in Economics
%J Matematičeskie zametki
%D 2005
%P 377-395
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/
%G ru
%F MZM_2005_78_3_a5
V. P. Maslov. Nonlinear Averages in Economics. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 377-395. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a5/

[1] Kolmogorov A. N., Izbrannye trudy po matematike i mekhanike, 1985, 136–137

[2] Maslov V. P., “Aksiomy nelineinogo osredneniya v finansovoi matematike i dinamika kursa aktsii”, Teor. veroyatn. i ee primen., 48:4 (2003), 800–810 | MR

[3] ‘Zero Intelligence’ Trading Closely Mimics Stock Market, , NewScientist, Katharine Davis, 05/02/01, sm. takzhe drugie saity po ssylke “Zero Intelligence” http://www.newscientist.com/article.ns?id=dn6948

[4] Vyugin V. V., Maslov V. P., “Teorema o kontsentratsii dlya entropii i svobodnoi energii”, Problemy peredachi informatsii, 41:2 (2005), 72–88 | MR

[5] Maslov V. P., “Geometricheskoe “kvantovanie” termodinamiki i statisticheskie popravki v kriticheskikh tochkakh”, TMF, 101:3 (1994), 433–441 | MR | Zbl

[6] Kheding Dzh., “Vvedenie v metod fazovogo intervala”, Posleslovie k knige: Maslov V. P., Metod VKB v mnogomernom sluchae, Mir, M., 1965

[7] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[8] Maslov V. P., “Approksimatsionnye veroyatnosti, zakon kvazistabilnogo rynka i fazovyi perekhod iz “kondensatnogo” sostoyaniya”, Dokl. RAN, 392:6 (2003), 727–732 | MR

[9] Maslov V. P., “Integralnye uravneniya i fazovye perekhody v veroyatnostnykh igrakh. Analogiya so statisticheskoi fizikoi”, Teor. veroyatn. i ee primen., 48:2 (2003), 403–411 | MR | Zbl

[10] Maslov V. P., “Ekonofizika i kvantovaya statistika”, Matem. zametki, 72:6 (2002), 883–891 | Zbl

[11] Maslov V. P., “Zavisimost pokupatelnoi sposobnosti i srednego dokhoda naseleniya ot chisla pokupatelei na spetsializirovnnom rynke i v regione. Zakony ekonofiziki”, Dokl. RAN, 395:2 (2004), 164–168 | Zbl

[12] Maslov V. P., “Raskhody pokupatelei i skorost oborota pri nelineinom finansovom osrednenii. Zakony ekonofiziki”, Dokl. RAN, 396:2 (2004), 155–158 | Zbl

[13] Maslov V. P., “Nelineinoe finansovoe osrednenie, evolyutsionnyi protsess i zakony ekonofiziki”, Teor. veroyatn. i ee primenen., 49:2 (2004), 269 | MR | Zbl

[14] Maslov V. P., “Kvazistabilnaya ekonomika i ee svyaz s termodinamikoi sverkhtekuchei zhidkosti. Defolt kak fazovyi perekhod nulevogo roda. 1; 2”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:4 (2004), 690–732; 12:1 (2005), 3–40 | Zbl

[15] Baturin V. N., Lebedev S. G., Maslov V. P., Sadovnikov B. I., Chebotarev A. M., “Rekonstruktsiya Pareto-raspredeleniya v oblasti vysokikh dokhodov”, Ekonomicheskaya nauka sovremennoi Rossii, 2005, no. 3

[16] Maslov V. P., “Quantum economics”, Russian J. Math. Phys., 12:2 (2005), 219–231 | Zbl

[17] Maslov V. P., Kapitalisticheskaya matematika, , 2005, Manuscript www.viktor-maslov.narod.ru