Normalizers of the Sylow 2-Subgroups in Finite Simple Groups
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 368-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

The description of the normalizers of the Sylow 2-subgroups in finite simple groups is completed.
@article{MZM_2005_78_3_a4,
     author = {A. S. Kondrat'ev},
     title = {Normalizers of the {Sylow} {2-Subgroups} in {Finite} {Simple} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {368--376},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a4/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
TI  - Normalizers of the Sylow 2-Subgroups in Finite Simple Groups
JO  - Matematičeskie zametki
PY  - 2005
SP  - 368
EP  - 376
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a4/
LA  - ru
ID  - MZM_2005_78_3_a4
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%T Normalizers of the Sylow 2-Subgroups in Finite Simple Groups
%J Matematičeskie zametki
%D 2005
%P 368-376
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a4/
%G ru
%F MZM_2005_78_3_a4
A. S. Kondrat'ev. Normalizers of the Sylow 2-Subgroups in Finite Simple Groups. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 368-376. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a4/

[1] Carter R., Fong P., “The Sylow $2$-subgroups of the finite classical groups”, J. Algebra, 1:1 (1964), 139–151 | DOI | MR | Zbl

[2] Kondratev A. S., Mazurov V. D., “$2$-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | MR

[3] Aschbacher M., “On finite groups of Lie type and odd characteristic”, J. Algebra, 66:2 (1980), 400–424 | DOI | MR | Zbl

[4] Aschbacher M., “A characterization of Chevalley groups over fields of odd order”, Ann. Math., 106:2–3 (1977), 353–468 ; Correction, Ann. Math., 111:3 (1980), 411–414 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76 (1984), 469–514 | DOI | MR | Zbl

[6] Kleidman P. B., Liebeck M. W., The Subgroup Structure of Finite Classical Groups, Cambridge University Press, Cambridge, 1990 | MR

[7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] Aschbacher M., Finite Group Theory, Cambridge University Press, Cambridge, 1986 | Zbl

[9] Carter R., Simple Groups of Lie Type, Wiley, London, 1972 | Zbl

[10] Dickson L. E., Linear Groups with an Exposition of the Galois Field Theory, Dover, New York, 1958 | Zbl

[11] Gorenstein D., Harada K., “On finite groups with Sylow $2$-subgroups of type $\widehat A_n$, $n=8$, $9$, $10$ and $11$”, J. Algebra, 19:2 (1971), 185–227 | DOI | Zbl

[12] Held D., “The simple groups related to $M_{24}$”, J. Algebra, 13:1 (1969), 253–296 | DOI | Zbl

[13] Solomon R., “Finite groups with Sylow $2$-subgroups of type $3$”, J. Algebra, 28:1 (1974), 182–198 | DOI | Zbl