Weighted Means, Strict Ergodicity, and Uniform Distributions
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 358-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

We strengthen the well-known Oxtoby theorem for strictly ergodic transformations by replacing the standard Cesaro convergence by the weaker Riesz or Voronoi convergence with monotonically increasing or decreasing weight coefficients. This general result allows, in particular, to strengthen the classical Weyl theorem on the uniform distribution of fractional parts of polynomials with irrational coefficients.
@article{MZM_2005_78_3_a3,
     author = {V. V. Kozlov},
     title = {Weighted {Means,} {Strict} {Ergodicity,} and {Uniform} {Distributions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {358--367},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a3/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Weighted Means, Strict Ergodicity, and Uniform Distributions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 358
EP  - 367
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a3/
LA  - ru
ID  - MZM_2005_78_3_a3
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Weighted Means, Strict Ergodicity, and Uniform Distributions
%J Matematičeskie zametki
%D 2005
%P 358-367
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a3/
%G ru
%F MZM_2005_78_3_a3
V. V. Kozlov. Weighted Means, Strict Ergodicity, and Uniform Distributions. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 358-367. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a3/

[1] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[2] Hanson D. L., Pledger G., “On the mean ergodic theorem for weighted averages”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 13:13 (1969), 141–149 | DOI | MR | Zbl

[3] Kozlov V. V., “Summirovanie raskhodyaschikhsya ryadov i ergodicheskie teoremy”, Tr. sem. im. I. G. Petrovskogo, 22, Izd-vo Mosk. un-ta, M., 2002, 142–168 | MR

[4] Baxter G., “An ergodic theorem with weighted averages”, J. Math. Mech., 13:3 (1964), 481–488 | MR | Zbl

[5] Chacon R. V., “Ordinary means imply recurrent means”, Bull. Amer. Math. Soc., 70 (1964), 796–797 | DOI | MR | Zbl

[6] Oxtoby J. C., “Ergodic sets”, Bull. Amer. Math. Soc., 58:2 (1952), 116–136 | DOI | MR | Zbl

[7] Furstenberg H., “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | Zbl

[8] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985

[9] Kozlov V. V., Madsen T., “Chisla vrascheniya Puankare i srednie Rissa i Voronogo”, Matem. zametki, 74:2 (2003), 314–315 | Zbl

[10] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980

[11] Veil G., “O ravnomernom raspredelenii chisel po modulyu odin”, Izbrannye trudy, Nauka, M., 1984, 58–93

[12] Kozlov V. V., “O ravnomernom raspredelenii na tore”, Vestn. MGU. Ser. 1. Matem., mekh., 2004, no. 2, 22–29 | Zbl

[13] Cigler J., “Methods of summability and uniform distribution $\mod1$”, Compos. Math., 16 (1964), 44–51 | Zbl

[14] Doroidar A. F., “A note on the generalized uniform distribution ($\mod1$)”, J. Natur. Sci. Math., 11 (1971), 185–189

[15] Bohl P., “Über eine Differentialgleichung der Störungstheorie”, J. Reine Angew. Math., 131:4 (1906), 268–321

[16] Kozlov V. V., “Ob integralakh kvaziperiodicheskikh funktsii”, Vestn. MGU. Ser. 1. Matem., mekh., 1978, no. 1, 106–115 | Zbl

[17] Halász G., “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 289–395

[18] Sorokin A. A., “Ob ostsillyatsiyakh srednikh Rissa i Voronogo”, Vestn. MGU. Ser. 1. Matem., mekh., 2005, no. 2, 13–17 | Zbl