Presentations of $m$-Complexity at Most 1 Defining the Trivial Group
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 349-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of presentations of $m$-complexity at most 1 defining the trivial group and containing a $Q^{**}$-equivalent copy of every balanced presentation of the trivial group with $m$-complexity at most 1 is described.
@article{MZM_2005_78_3_a2,
     author = {S. G. Ivanov},
     title = {Presentations of $m${-Complexity} at {Most} 1 {Defining} the {Trivial} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {349--357},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/}
}
TY  - JOUR
AU  - S. G. Ivanov
TI  - Presentations of $m$-Complexity at Most 1 Defining the Trivial Group
JO  - Matematičeskie zametki
PY  - 2005
SP  - 349
EP  - 357
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/
LA  - ru
ID  - MZM_2005_78_3_a2
ER  - 
%0 Journal Article
%A S. G. Ivanov
%T Presentations of $m$-Complexity at Most 1 Defining the Trivial Group
%J Matematičeskie zametki
%D 2005
%P 349-357
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/
%G ru
%F MZM_2005_78_3_a2
S. G. Ivanov. Presentations of $m$-Complexity at Most 1 Defining the Trivial Group. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 349-357. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/

[1] Hog-Angeloni C., Metzler W., Sieradski A. J., Two-dimensional Homotopy and Combinatorial Group Theory, Cambridge University Press, Cambridge, 1993 | MR

[2] Ivanov S. G., “Codes of $m$-complexity 1”, Proc. Steklov. Institute Math. Suppl. 2, 2001, 61–70 | MR

[3] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[4] Sbrodova E. A., “Kody $m$-slozhnosti $2$”, Mezhdunarodnaya konferentsiya–shkola po geometrii i analizu, posvyaschennaya pamyati A. D. Aleksandrova, Tezisy dokl., Novosibirsk, 2002, 64–65