Presentations of $m$-Complexity at Most 1 Defining the Trivial Group
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 349-357
Cet article a éte moissonné depuis la source Math-Net.Ru
A family of presentations of $m$-complexity at most 1 defining the trivial group and containing a $Q^{**}$-equivalent copy of every balanced presentation of the trivial group with $m$-complexity at most 1 is described.
@article{MZM_2005_78_3_a2,
author = {S. G. Ivanov},
title = {Presentations of $m${-Complexity} at {Most} 1 {Defining} the {Trivial} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {349--357},
year = {2005},
volume = {78},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/}
}
S. G. Ivanov. Presentations of $m$-Complexity at Most 1 Defining the Trivial Group. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 349-357. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a2/
[1] Hog-Angeloni C., Metzler W., Sieradski A. J., Two-dimensional Homotopy and Combinatorial Group Theory, Cambridge University Press, Cambridge, 1993 | MR
[2] Ivanov S. G., “Codes of $m$-complexity 1”, Proc. Steklov. Institute Math. Suppl. 2, 2001, 61–70 | MR
[3] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl
[4] Sbrodova E. A., “Kody $m$-slozhnosti $2$”, Mezhdunarodnaya konferentsiya–shkola po geometrii i analizu, posvyaschennaya pamyati A. D. Aleksandrova, Tezisy dokl., Novosibirsk, 2002, 64–65