Mixed Series of Chebyshev Polynomials Orthogonal on a Uniform Grid
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 442-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an expansion of a discrete function in the form of a mixed series of Chebyshev polynomials. We obtain estimates of the approximation error of the function and its derivatives.
@article{MZM_2005_78_3_a10,
     author = {I. I. Sharapudinov},
     title = {Mixed {Series} of {Chebyshev} {Polynomials} {Orthogonal} on a {Uniform} {Grid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {442--465},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a10/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Mixed Series of Chebyshev Polynomials Orthogonal on a Uniform Grid
JO  - Matematičeskie zametki
PY  - 2005
SP  - 442
EP  - 465
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a10/
LA  - ru
ID  - MZM_2005_78_3_a10
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Mixed Series of Chebyshev Polynomials Orthogonal on a Uniform Grid
%J Matematičeskie zametki
%D 2005
%P 442-465
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a10/
%G ru
%F MZM_2005_78_3_a10
I. I. Sharapudinov. Mixed Series of Chebyshev Polynomials Orthogonal on a Uniform Grid. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 442-465. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a10/

[1] Sharapudinov I. I., “Priblizhenii funktsii s peremennoi gladkostyu summami Fure po ortogonalnym polinomam”, Mezhdunarodnaya konferentsiya “Teoriya priblizhenii i garmonicheskii analiz” (26–29 maya 1998 g.), Tula, 1998, 275

[2] Sharapudinov I. I., “Priblizhenie diskretnykh funktsii i mnogochleny Chebysheva, ortogonalnye na ravnomernoi setke”, Voronezhskaya zimnyaya matematicheskaya shkola “Sovremennye metody teorii funktsii i smezhnye problemy”, Tezisy dokladov (27 yanvarya–4 fevralya 1999 g.), Voronezh, 1999, 204

[3] Sharapudinov I. I., “Ispravlennye summy Fure po ortogonalnym polinomam i ikh approksimativnye svoistva”, Voronezhskaya zimnyaya matematicheskaya shkola “Sovremennye metody teorii funktsii i smezhnye problemy”, Tezisy dokladov (27 yanvarya–4 fevralya 2001 g.), Voronezh, 2001, 289–290

[4] Sharapudinov I. I., “Smeshannye ryady po ortogonalnym polinomam”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly (28 yanvarya–4 fevralya 2002 g.), Saratov, 2002, 228–229

[5] Sharapudinov I. I., “Smeshannye ryady po polinomam, ortogonalnym na diskretnykh setkakh”, Voronezhskaya zimnyaya matematicheskaya shkola “Sovremennye metody teorii funktsii i smezhnye problemy”, Tezisy dokladov (26 yanvarya–2 fevralya 2003 g.), Voronezh, 2003, 285–286

[6] Sharapudinov I. I., “Smeshannye ryady po polinomam Yakobi i metody ikh diskretizatsii v Chebyshevskom sluchae”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shestoi Kazanskoi mezhdunarodnoi letnei shkoly-konferentsii (Kazan, 27 iyunya–4 iyulya 2003 g.), Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 19, Izd-vo Kazanskogo matem. ob-va, Kazan, 2003

[7] Sharapudinov I. I., “Smeshannye ryady po nekotorym ortogonalnym sistemam i ikh prilozheniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 12-i Saratovskoi zimnei shkoly (27 yanvarya–3 fevralya 2004 g.), Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 205–206

[8] Sharapudinov I. I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matem. sb., 194:3 (2003), 115–148 | MR | Zbl

[9] Sharapudinov I. I., “Approksimativnye svoistva operatorov $\mathscr{Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | MR | Zbl

[10] Sharapudinov I. I., Mnogochleny, ortogonalnye na diskretnykh setkakh, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997

[11] Karlin S., McGregor J. L., “The Hahn polynomials, formulas and an application”, Scripta Math., 26:1 (1961), 33–46 | Zbl

[12] Gasper G., “Positivity and special functions”, Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975, 35, ed. R. A. Askey, Academic Press, New York, 1975, 375–433

[13] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962