On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 331-348
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a special case of Siegel's conjecture concerning the representability of $E$-functions in the form of polynomials in hypergeometric functions. We prove several assertions (formulated earlier by A. B. Shidlovskii) about the transcendence and linear independence of values of $E$-functions.
@article{MZM_2005_78_3_a1,
author = {V. A. Gorelov},
title = {On the {Structure} of the {Set} of $E${-Functions} {Satisfying} {Linear} {Differential} {Equations} of {Second} {Order}},
journal = {Matemati\v{c}eskie zametki},
pages = {331--348},
publisher = {mathdoc},
volume = {78},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/}
}
TY - JOUR AU - V. A. Gorelov TI - On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order JO - Matematičeskie zametki PY - 2005 SP - 331 EP - 348 VL - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/ LA - ru ID - MZM_2005_78_3_a1 ER -
V. A. Gorelov. On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/