On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 331-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a special case of Siegel's conjecture concerning the representability of $E$-functions in the form of polynomials in hypergeometric functions. We prove several assertions (formulated earlier by A. B. Shidlovskii) about the transcendence and linear independence of values of $E$-functions.
@article{MZM_2005_78_3_a1,
     author = {V. A. Gorelov},
     title = {On the {Structure} of the {Set} of $E${-Functions} {Satisfying} {Linear} {Differential} {Equations} of {Second} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--348},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/}
}
TY  - JOUR
AU  - V. A. Gorelov
TI  - On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order
JO  - Matematičeskie zametki
PY  - 2005
SP  - 331
EP  - 348
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/
LA  - ru
ID  - MZM_2005_78_3_a1
ER  - 
%0 Journal Article
%A V. A. Gorelov
%T On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order
%J Matematičeskie zametki
%D 2005
%P 331-348
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/
%G ru
%F MZM_2005_78_3_a1
V. A. Gorelov. On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a1/

[1] Siegel C. L., “Über einige Anwendungen diophantischer Approximationen”, Abh. Preuss. Acad. Wiss. Phys.-Math. Kl., 1929–1930, no. 1, 1–70

[2] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[3] Gorelov V. A., “Ob algebraicheskoi nezavisimosti znachenii $E$-funktsii v osobykh tochkakh i gipoteze Zigelya”, Matem. zametki, 67:2 (2000), 174–190 | MR | Zbl

[4] Gorelov V. A., “O gipoteze Zigelya dlya sluchaya lineinykh odnorodnykh differentsialnykh uravnenii 2-go poryadka”, Matem. zametki, 75:4 (2004), 549–565 | Zbl

[5] Shidlovskii A. B., “O lineinoi nezavisimosti znachenii $E$-funktsii v algebraicheskikh tochkakh”, Matem. zametki, 55:2 (1994), 174–185 | MR

[6] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR

[7] Ains E. L., Obyknovennye differentsialnye uravneniya, Kharkov, 1939

[8] André Y., “Séries Gevrey de type arithmétique”, Ann. of Math., 151 (2000), 705–756 | DOI | MR

[9] Perron O., “Über lineare Differentialgleichungen mit rationalen Koeffizienten”, Acta Math., 34 (1911), 139–163 | DOI

[10] Valiron Zh., Analiticheskie funktsii, Gostekhizdat, M., 1957