Improper Riemann Integral and Henstock Integral in $\mathbb R^n$
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 251-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Henstock integral in $\mathbb R^n$ and its relation to the $n$-dimensional improper Riemann integral are studied. A Hake-type theorem for the Henstock integral in $\mathbb R^n$ is proved.
@article{MZM_2005_78_2_a9,
     author = {P. Muldowney and V. A. Skvortsov},
     title = {Improper {Riemann} {Integral} and {Henstock} {Integral} in $\mathbb R^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a9/}
}
TY  - JOUR
AU  - P. Muldowney
AU  - V. A. Skvortsov
TI  - Improper Riemann Integral and Henstock Integral in $\mathbb R^n$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 251
EP  - 258
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a9/
LA  - ru
ID  - MZM_2005_78_2_a9
ER  - 
%0 Journal Article
%A P. Muldowney
%A V. A. Skvortsov
%T Improper Riemann Integral and Henstock Integral in $\mathbb R^n$
%J Matematičeskie zametki
%D 2005
%P 251-258
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a9/
%G ru
%F MZM_2005_78_2_a9
P. Muldowney; V. A. Skvortsov. Improper Riemann Integral and Henstock Integral in $\mathbb R^n$. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 251-258. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a9/

[1] Bartle R., A Modern Theory of Integration, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[2] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 3, Fizmatlit, M.–SPb., 2002

[3] Zorich V. A., Matematicheskii analiz, T. 2, MTsNMO, M., 2002

[4] Faure C.-A., Mawhin J., “The Hake's property for some integrals over multidimensional intervals”, Real Analysis Exchange, 20:2 (1994/5), 622–630 | MR

[5] Henstock R., Lectures on the Theory of Integration, World Scientific, Singapore, 1988 | MR | Zbl