Continuous Approximations of Multivalued Mappings and Fixed Points
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 212-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove a fixed-point theorem for completely continuous multivalued mappings defined on a bounded convex closed subset $X$ of the Hilbert space $H$ which satisfies the tangential condition $F(x)\cap(x+T_X(x))\ne\varnothing$, where $T_X(x)$ is the cone tangent to the set $X$ at a point $x$. The proof of this theorem is based on the method of single-valued approximations to multivalued mappings. In this paper, we consider a simple approach for constructing single-valued approximations to multivalued mappings. This approach allows us not only to simplify the proofs of already-known theorems, but also to obtain new statements needed to prove the main theorem in this paper.
@article{MZM_2005_78_2_a5,
     author = {B. D. Gel'man},
     title = {Continuous {Approximations} of {Multivalued} {Mappings} and {Fixed} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {212--222},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a5/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Continuous Approximations of Multivalued Mappings and Fixed Points
JO  - Matematičeskie zametki
PY  - 2005
SP  - 212
EP  - 222
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a5/
LA  - ru
ID  - MZM_2005_78_2_a5
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Continuous Approximations of Multivalued Mappings and Fixed Points
%J Matematičeskie zametki
%D 2005
%P 212-222
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a5/
%G ru
%F MZM_2005_78_2_a5
B. D. Gel'man. Continuous Approximations of Multivalued Mappings and Fixed Points. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 212-222. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a5/

[1] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[2] Ben-El-Mechaiekh H., Kryszewski W., “Equilibria of set-valued maps on nonconvex domains”, Trans. Amer. Math. Soc., 349:10 (1997), 4159–4179 | DOI

[3] Aubin J.-P., Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl

[4] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[5] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[6] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | Zbl

[7] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhn. Matem. analiz, 19, VINITI, M., 1982, 127–229

[8] Repovsh D., Semenov P. V., “Teoriya E. Maikla nepreryvnykh selektsii. Razvitie i prilozheniya”, UMN, 49:6 (1994), 151–188

[9] Repovs D., Semenov P. V., Continuous Selections of Multivalued Mappings, Mathematics and its Applications, 455, Kluwer, Dordrecht, 1998 | Zbl

[10] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1986 | Zbl

[11] Michael E., “Continuous selections, 1”, Ann. of Math., 63:2 (1956), 361–382 | DOI | Zbl

[12] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975