Positive Solutions of Quasilinear Elliptic Equations
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with existence theorems for positive solutions of the Dirichlet problem for quasilinear elliptic differential equation containing a gradient term. Using the shooting method and the a priori estimates for the first zero, we obtain sufficient conditions for the existence of classical positive solutions of the problem in the ball.
@article{MZM_2005_78_2_a4,
author = {E. I. Galakhov},
title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {202--211},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/}
}
E. I. Galakhov. Positive Solutions of Quasilinear Elliptic Equations. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/