Positive Solutions of Quasilinear Elliptic Equations
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with existence theorems for positive solutions of the Dirichlet problem for quasilinear elliptic differential equation containing a gradient term. Using the shooting method and the a priori estimates for the first zero, we obtain sufficient conditions for the existence of classical positive solutions of the problem in the ball.
@article{MZM_2005_78_2_a4,
     author = {E. I. Galakhov},
     title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {202--211},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - Positive Solutions of Quasilinear Elliptic Equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 202
EP  - 211
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/
LA  - ru
ID  - MZM_2005_78_2_a4
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T Positive Solutions of Quasilinear Elliptic Equations
%J Matematičeskie zametki
%D 2005
%P 202-211
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/
%G ru
%F MZM_2005_78_2_a4
E. I. Galakhov. Positive Solutions of Quasilinear Elliptic Equations. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/