Positive Solutions of Quasilinear Elliptic Equations
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is concerned with existence theorems for positive solutions of the Dirichlet problem for quasilinear elliptic differential equation containing a gradient term. Using the shooting method and the a priori estimates for the first zero, we obtain sufficient conditions for the existence of classical positive solutions of the problem in the ball.
@article{MZM_2005_78_2_a4,
author = {E. I. Galakhov},
title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {202--211},
year = {2005},
volume = {78},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/}
}
E. I. Galakhov. Positive Solutions of Quasilinear Elliptic Equations. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a4/
[1] Gidas B., Ni W.-M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl
[2] Mitidieri E., Caristi G., “Nonexistence of positive solutions of quasilinear equations”, Adv. Differential Equations, 2 (1997), 319–359 | MR | Zbl
[3] Chipot M., Weissler F. B., “Some blow up results for a nonlinear parabolic problem with a gradient term”, SIAM J. Math. Anal., 20 (1989), 886–907 | DOI | MR | Zbl
[4] Ni W.-M., Serrin J., “Existence and non-existence theorems for ground states of quasilinear partial differential equations. The anomalous case”, Accad. Naz. Lincei, Convegni dei Lincei, 77 (1986), 231–256