Group Extensions and Hall Polynomials
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 180-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give two proofs of a formula containing the numbers of automorphisms of an Abelian group, of its subgroups, and of its quotient groups. The first proof is based on the use of the theory of Hall polynomials, while the second one uses extension theory for Abelian groups.
@article{MZM_2005_78_2_a2,
     author = {G. V. Voskresenskaya},
     title = {Group {Extensions} and {Hall} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {180--185},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a2/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Group Extensions and Hall Polynomials
JO  - Matematičeskie zametki
PY  - 2005
SP  - 180
EP  - 185
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a2/
LA  - ru
ID  - MZM_2005_78_2_a2
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Group Extensions and Hall Polynomials
%J Matematičeskie zametki
%D 2005
%P 180-185
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a2/
%G ru
%F MZM_2005_78_2_a2
G. V. Voskresenskaya. Group Extensions and Hall Polynomials. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 180-185. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a2/

[1] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR

[2] Maklein S., Gomologiya, Nauka, M., 1966