Homotopy Theories of Algebras over Operads
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 278-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Homotopy theories of algebras over operads, including operads over "little $n$-cubes", are defined. Spectral sequences are constructed and the corresponding homotopy groups are calculated.
@article{MZM_2005_78_2_a12,
     author = {V. A. Smirnov},
     title = {Homotopy {Theories} of {Algebras} over {Operads}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {278--285},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a12/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Homotopy Theories of Algebras over Operads
JO  - Matematičeskie zametki
PY  - 2005
SP  - 278
EP  - 285
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a12/
LA  - ru
ID  - MZM_2005_78_2_a12
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Homotopy Theories of Algebras over Operads
%J Matematičeskie zametki
%D 2005
%P 278-285
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a12/
%G ru
%F MZM_2005_78_2_a12
V. A. Smirnov. Homotopy Theories of Algebras over Operads. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 278-285. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a12/

[1] Quillen D., “Rational homotopy theory”, Ann. of Math., 90:2 (1969), 205–295 | DOI | MR | Zbl

[2] Smirnov V. A., “O kotsepnom komplekse topologicheskogo prostranstva”, Matem. sb., 115 (1981), 146–158 | MR | Zbl

[3] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49 (1985), 1302–1321 | Zbl

[4] May J. P., The Geometry of Iterated Loop Spaces, Lecture Notes in Math., 271, Springer, New York, 1972 | MR | Zbl

[5] Boardman J. M., Vogt R. M., Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math., 347, Springer, New York, 1973 | MR | Zbl

[6] Quillen D., Homotopical Algebra, Lecture Notes in Math., 43, Springer, New York, 1967 | Zbl

[7] Dyer E., Lashof R., “Homology of iterated loop spaces”, Amer. J. Math., 84 (1962), 35–88 | DOI | Zbl

[8] Smirnov V. A., “The homology of iterated loop spaces”, Forum Mathematicum, 14 (2002), 345–381 | DOI | Zbl