Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 265-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the averaged $f$-trace of a truncated generalized multidimensional discrete convolution operator as the truncation domain expands. By definition, the averaged $f$-trace of a finite-dimensional operator $A$ is equal to $n^{-1}\sum_{k=1}^nf(\lambda_k)$, where $n$ is the dimension of the space in which the operator $A$ acts, the set of numbers $\lambda_k$, $k=1,\dots,n$, is the complete collection of eigenvalues of the operator $A$, counting multiplicity; a generalized discrete convolution is an operator from the closure of the algebra generated by discrete convolution operators and by operators of multiplication by functions admitting a continuous continuation onto the sphere at infinity.
@article{MZM_2005_78_2_a11,
     author = {I. B. Simonenko},
     title = {Szeg\H {o-Type} {Limit} {Theorems} for {Generalized} {Discrete} {Convolution} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/}
}
TY  - JOUR
AU  - I. B. Simonenko
TI  - Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
JO  - Matematičeskie zametki
PY  - 2005
SP  - 265
EP  - 277
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/
LA  - ru
ID  - MZM_2005_78_2_a11
ER  - 
%0 Journal Article
%A I. B. Simonenko
%T Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
%J Matematičeskie zametki
%D 2005
%P 265-277
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/
%G ru
%F MZM_2005_78_2_a11
I. B. Simonenko. Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/

[1] Szegö G., “On certain Hermitian forms associated with the Fourier series of positive functions”, Festschrift Marcel Riesz, Lund, 1952, 228–238 | MR | Zbl

[2] Grenander U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961

[3] Böttcher A., Silbermann B., Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983 | MR

[4] Linnik I. Yu., “Mnogomernyi analog predelnoi teoremy G. Sege”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl

[5] Simonenko I. B., Predelnye teoremy tipa Sege dlya operatorov sostavnoi i obobschennoi svertki, Dep. VINITI 12.08.99 No. 2639-V99, Rostov-na-Donu, 1999

[6] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[7] Kozak A. V., “Lokalnyi printsip v teorii proektsionnykh metodov”, Dokl. AN SSSR, 212:6 (1973), 1287–1289 | MR | Zbl

[8] Kozak A. V., Simonenko I. B., “Proektsionnye metody resheniya mnogomernykh diskretnykh uravnenii v svertkakh”, Sib. matem. zh., 21:2 (1980), 119–127 | Zbl

[9] Simonenko I. B., “O mnogomernykh diskretnykh svertkakh”, Matematicheskie issledovaniya, 3, no. 1, Shtiintsa, Kishinev, 1968, 108–122 | MR

[10] Simonenko I. B., “Operatory tipa svertki v konusakh”, Matem. sb., 74 (116):2 (1967), 298–313 | Zbl

[11] Matematicheskaya entsiklopediya, Sovetskaya entsiklopediya, M., 1979

[12] Simonenko I. B., Chin Ngok Min, Lokalnyi metod v teorii odnomernykh singulyarnykh integralnykh uravnenii s kusochno-nepreryvnymi koeffitsientami. Neterovost, Izd-vo RGU, Rostov-na-Donu, 1986

[13] Simonenko I. B., Mnogomernyi variant teoremy G. Sege o predelnoi plotnosti spektra usechennykh operatorov Teplitsa. Sluchai, kogda simvol prinadlezhit klassu Vinera, Dep. VINITI 21.08.98. No. 2635-V98, Rostov-na-Donu, 1998

[14] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961

[15] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1986