Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 265-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the averaged $f$-trace of a truncated generalized multidimensional discrete convolution operator as the truncation domain expands. By definition, the averaged $f$-trace of a finite-dimensional operator $A$ is equal to $n^{-1}\sum_{k=1}^nf(\lambda_k)$, where $n$ is the dimension of the space in which the operator $A$ acts, the set of numbers $\lambda_k$, $k=1,\dots,n$, is the complete collection of eigenvalues of the operator $A$, counting multiplicity; a generalized discrete convolution is an operator from the closure of the algebra generated by discrete convolution operators and by operators of multiplication by functions admitting a continuous continuation onto the sphere at infinity.
@article{MZM_2005_78_2_a11,
     author = {I. B. Simonenko},
     title = {Szeg\H {o-Type} {Limit} {Theorems} for {Generalized} {Discrete} {Convolution} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/}
}
TY  - JOUR
AU  - I. B. Simonenko
TI  - Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
JO  - Matematičeskie zametki
PY  - 2005
SP  - 265
EP  - 277
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/
LA  - ru
ID  - MZM_2005_78_2_a11
ER  - 
%0 Journal Article
%A I. B. Simonenko
%T Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators
%J Matematičeskie zametki
%D 2005
%P 265-277
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/
%G ru
%F MZM_2005_78_2_a11
I. B. Simonenko. Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/