Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_2_a11, author = {I. B. Simonenko}, title = {Szeg\H {o-Type} {Limit} {Theorems} for {Generalized} {Discrete} {Convolution} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {265--277}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/} }
I. B. Simonenko. Szeg\H o-Type Limit Theorems for Generalized Discrete Convolution Operators. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a11/
[1] Szegö G., “On certain Hermitian forms associated with the Fourier series of positive functions”, Festschrift Marcel Riesz, Lund, 1952, 228–238 | MR | Zbl
[2] Grenander U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961
[3] Böttcher A., Silbermann B., Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983 | MR
[4] Linnik I. Yu., “Mnogomernyi analog predelnoi teoremy G. Sege”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl
[5] Simonenko I. B., Predelnye teoremy tipa Sege dlya operatorov sostavnoi i obobschennoi svertki, Dep. VINITI 12.08.99 No. 2639-V99, Rostov-na-Donu, 1999
[6] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR
[7] Kozak A. V., “Lokalnyi printsip v teorii proektsionnykh metodov”, Dokl. AN SSSR, 212:6 (1973), 1287–1289 | MR | Zbl
[8] Kozak A. V., Simonenko I. B., “Proektsionnye metody resheniya mnogomernykh diskretnykh uravnenii v svertkakh”, Sib. matem. zh., 21:2 (1980), 119–127 | Zbl
[9] Simonenko I. B., “O mnogomernykh diskretnykh svertkakh”, Matematicheskie issledovaniya, 3, no. 1, Shtiintsa, Kishinev, 1968, 108–122 | MR
[10] Simonenko I. B., “Operatory tipa svertki v konusakh”, Matem. sb., 74 (116):2 (1967), 298–313 | Zbl
[11] Matematicheskaya entsiklopediya, Sovetskaya entsiklopediya, M., 1979
[12] Simonenko I. B., Chin Ngok Min, Lokalnyi metod v teorii odnomernykh singulyarnykh integralnykh uravnenii s kusochno-nepreryvnymi koeffitsientami. Neterovost, Izd-vo RGU, Rostov-na-Donu, 1986
[13] Simonenko I. B., Mnogomernyi variant teoremy G. Sege o predelnoi plotnosti spektra usechennykh operatorov Teplitsa. Sluchai, kogda simvol prinadlezhit klassu Vinera, Dep. VINITI 21.08.98. No. 2635-V98, Rostov-na-Donu, 1998
[14] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961
[15] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1986