On $R$-Universal Functions
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 259-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the $\rho$-resemblance type of an $R$-universal function ($R\ne\varnothing,\mathbb N$) ) consists of one isomorphism type, but of more than one $\rho$-recursive isomorphism type.
@article{MZM_2005_78_2_a10,
     author = {E. A. Polyakov},
     title = {On $R${-Universal} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {259--264},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a10/}
}
TY  - JOUR
AU  - E. A. Polyakov
TI  - On $R$-Universal Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 259
EP  - 264
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a10/
LA  - ru
ID  - MZM_2005_78_2_a10
ER  - 
%0 Journal Article
%A E. A. Polyakov
%T On $R$-Universal Functions
%J Matematičeskie zametki
%D 2005
%P 259-264
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a10/
%G ru
%F MZM_2005_78_2_a10
E. A. Polyakov. On $R$-Universal Functions. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 259-264. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a10/

[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977 | MR

[2] Polyakov E. A., Perov A. E., “$F_\rho$-funktsii”, Matem. zametki, 74:4 (2003), 559–563 | MR | Zbl

[3] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR