Symmetries of Real Hypersurfaces in Complex 3-Space
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 171-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper consists in the proof of the fact that for any germ of a real analytic hypersurface in complex 3-space the following alternative (dimension conjecture) takes place: either the dimension of the group of holomorphic symmetries of the germ is at most the dimension of that of a nondegenerate hyperquadric (the latter equals 15), or the group is infinite-dimensional. We also discuss mistakes found in A. Ershova's paper.
@article{MZM_2005_78_2_a1,
     author = {V. K. Beloshapka},
     title = {Symmetries of {Real} {Hypersurfaces} in {Complex} {3-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Symmetries of Real Hypersurfaces in Complex 3-Space
JO  - Matematičeskie zametki
PY  - 2005
SP  - 171
EP  - 179
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/
LA  - ru
ID  - MZM_2005_78_2_a1
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Symmetries of Real Hypersurfaces in Complex 3-Space
%J Matematičeskie zametki
%D 2005
%P 171-179
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/
%G ru
%F MZM_2005_78_2_a1
V. K. Beloshapka. Symmetries of Real Hypersurfaces in Complex 3-Space. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/

[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifold”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR

[2] Beloshapka V. K., “Veschestvennye podmnogoobraziya kompleksnogo prostranstva ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl

[3] Beloshapka V. K., “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | MR | Zbl

[4] Beloshapka V. K., Ezhov V. V., Shmalts G., “Golomorfnaya klassifikatsiya chetyrekhmernykh poverkhnostei v $\mathbb{C}^3$”, Izv. RAN. Ser. matem. (to appear)

[5] Ershova A. E., “Avtomorfizmy $2$-nevyrozhdennykh giperpoverkhnostei v $\mathbb{C}^3$”, Matem. zametki, 69:2 (2001), 214–222 | MR | Zbl

[6] Ebenfelt P., “Normal forms and biholomorphic equivalence of real hypersurfaces in $\mathbb C^3$”, Indiana Univ. Math. J., 47:2 (1998), 311–366 | DOI | MR | Zbl

[7] Vladimirov V. S., Sergeev A. G., “Kompleksnyi analiz v trube buduschego”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI AN SSSR, M., 1985, 191–266 | MR

[8] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235, Nauka, M., 2001, 114–142 | Zbl