Symmetries of Real Hypersurfaces in Complex 3-Space
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 171-179

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper consists in the proof of the fact that for any germ of a real analytic hypersurface in complex 3-space the following alternative (dimension conjecture) takes place: either the dimension of the group of holomorphic symmetries of the germ is at most the dimension of that of a nondegenerate hyperquadric (the latter equals 15), or the group is infinite-dimensional. We also discuss mistakes found in A. Ershova's paper.
@article{MZM_2005_78_2_a1,
     author = {V. K. Beloshapka},
     title = {Symmetries of {Real} {Hypersurfaces} in {Complex} {3-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Symmetries of Real Hypersurfaces in Complex 3-Space
JO  - Matematičeskie zametki
PY  - 2005
SP  - 171
EP  - 179
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/
LA  - ru
ID  - MZM_2005_78_2_a1
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Symmetries of Real Hypersurfaces in Complex 3-Space
%J Matematičeskie zametki
%D 2005
%P 171-179
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/
%G ru
%F MZM_2005_78_2_a1
V. K. Beloshapka. Symmetries of Real Hypersurfaces in Complex 3-Space. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a1/