Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 72-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abstract We consider the Sturm–Liouville operator on a convex smooth curve lying in the complex plane and connecting the points 0 and 1. We prove that if the eigenvalues $\lambda_k$ with large numbers are localized near a single ray, then this ray is the positive real semiaxis. Moreover, if the eigenvalues $\lambda_k$ are numbered with algebraic multiplicities taken into account, then $\lambda_k\sim\pi\cdot k$, $k\to+\infty$.
@article{MZM_2005_78_1_a7,
     author = {Kh. K. Ishkin},
     title = {Necessary {Conditions} for the {Localization} of the {Spectrum} of the {Sturm--Liouville} {Problem} on a {Curve}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {72--84},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
TI  - Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve
JO  - Matematičeskie zametki
PY  - 2005
SP  - 72
EP  - 84
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/
LA  - ru
ID  - MZM_2005_78_1_a7
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%T Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve
%J Matematičeskie zametki
%D 2005
%P 72-84
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/
%G ru
%F MZM_2005_78_1_a7
Kh. K. Ishkin. Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 72-84. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/

[1] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, UMN, 7:6 (1952), 3–96

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[4] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[5] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[6] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987

[7] Nikiforov A. F., Uvarov V. B., Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974 | MR