Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 72-84
Voir la notice de l'article provenant de la source Math-Net.Ru
Abstract We consider the Sturm–Liouville operator on a convex smooth curve lying in the complex plane and connecting the points 0 and 1. We prove that if the eigenvalues $\lambda_k$ with large numbers are localized near a single ray, then this ray is the positive real semiaxis. Moreover, if the eigenvalues $\lambda_k$ are numbered with algebraic multiplicities taken into account, then $\lambda_k\sim\pi\cdot k$, $k\to+\infty$.
@article{MZM_2005_78_1_a7,
author = {Kh. K. Ishkin},
title = {Necessary {Conditions} for the {Localization} of the {Spectrum} of the {Sturm--Liouville} {Problem} on a {Curve}},
journal = {Matemati\v{c}eskie zametki},
pages = {72--84},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/}
}
TY - JOUR AU - Kh. K. Ishkin TI - Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve JO - Matematičeskie zametki PY - 2005 SP - 72 EP - 84 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/ LA - ru ID - MZM_2005_78_1_a7 ER -
Kh. K. Ishkin. Necessary Conditions for the Localization of the Spectrum of the Sturm--Liouville Problem on a Curve. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 72-84. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a7/