On the Manifold of Almost Complex Structures
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 66-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(M,g_0)$ be a smooth closed Riemannian manifold of even dimension $2n$ admitting an almost complex structure. It is shown that the space $\mathscr A^+$ of all almost complex structures on $M$ determining the same orientation as the one determined by a fixed almost complex structure $J_0$ is a smooth locally trivial fiber bundle over the space $\mathscr A\mathscr O_{g_0}^+$ of almost complex structures orthogonal with respect to $g_0$ and determining the same orientation as $J_0$.
@article{MZM_2005_78_1_a6,
author = {N. A. Daurtseva},
title = {On the {Manifold} of {Almost} {Complex} {Structures}},
journal = {Matemati\v{c}eskie zametki},
pages = {66--71},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/}
}
N. A. Daurtseva. On the Manifold of Almost Complex Structures. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/