On the Manifold of Almost Complex Structures
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 66-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(M,g_0)$ be a smooth closed Riemannian manifold of even dimension $2n$ admitting an almost complex structure. It is shown that the space $\mathscr A^+$ of all almost complex structures on $M$ determining the same orientation as the one determined by a fixed almost complex structure $J_0$ is a smooth locally trivial fiber bundle over the space $\mathscr A\mathscr O_{g_0}^+$ of almost complex structures orthogonal with respect to $g_0$ and determining the same orientation as $J_0$.
@article{MZM_2005_78_1_a6,
     author = {N. A. Daurtseva},
     title = {On the {Manifold} of {Almost} {Complex} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {66--71},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - On the Manifold of Almost Complex Structures
JO  - Matematičeskie zametki
PY  - 2005
SP  - 66
EP  - 71
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/
LA  - ru
ID  - MZM_2005_78_1_a6
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T On the Manifold of Almost Complex Structures
%J Matematičeskie zametki
%D 2005
%P 66-71
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/
%G ru
%F MZM_2005_78_1_a6
N. A. Daurtseva. On the Manifold of Almost Complex Structures. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a6/

[1] Smolentsev N. K., “O prostranstve rimanovykh metrik na simplekticheskom i kontaktnom mnogoobrazii”, Sib. matem. zh., 42:6 (2001), 1402–1407 | MR

[2] McDuff D., “Introduction to symplectic topology”, IAS/Park City Math. Ser., 7, 1999, 8–33 | MR

[3] Smolentsev N. K., The space of associated metrics on a symplectic manifold, , 2001 E-print math.DG/0108110

[4] Smolentsev N. K., “O krivizne prostranstva assotsiirovannykh metrik na simplekticheskom mnogoobrazii”, Sib. matem. zh., 33:1 (1992), 132–139

[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Ch. 1, 2, Nauka, M., 1981

[6] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967