Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 52-58
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the set of arithmetic means for some classes of stationary and quasistationary sequences. Order-sharp estimates of the entropy of this set for the classes under consideration are given.
@article{MZM_2005_78_1_a4,
author = {V. F. Gaposhkin},
title = {Estimates of the {Entropy} of the {Set} of {Means} for {Some} {Classes} of {Stationary} and {Quasistationary} {Sequences}},
journal = {Matemati\v{c}eskie zametki},
pages = {52--58},
year = {2005},
volume = {78},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a4/}
}
TY - JOUR AU - V. F. Gaposhkin TI - Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences JO - Matematičeskie zametki PY - 2005 SP - 52 EP - 58 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a4/ LA - ru ID - MZM_2005_78_1_a4 ER -
V. F. Gaposhkin. Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a4/
[1] Talagrand M., “Applying a theorem of Fernique”, Ann. Inst. H. Poincaré, 32 (1996), 779–799 | MR | Zbl
[2] Weber M., Entropie metrique et convergence presque partout, Hermann, Paris, 1998 | MR | Zbl
[3] Gamet C., Weber M., “Entropy numbers of some ergodic averages”, Teor. veroyatn. i ee primen., 44:4 (1999), 776–795 | MR
[4] Gaposhkin V. F., “Skhodimost ryadov, svyazannykh so statsionarnymi posledovatelnostyami”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1365–1392 | MR
[5] Gaposhkin V. F., “O skorosti ubyvaniya veroyatnostei $\varepsilon$-uklonenii srednikh statsionarnykh protsessov”, Matem. zametki, 64:3 (1998), 366–372 | MR | Zbl