Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 26-36
Cet article a éte moissonné depuis la source Math-Net.Ru
For a singularly perturbed elliptic equation (the Neumann boundary-value problem), we prove a theorem on the passage to the limit for the case in which the degenerate equation has a nonisolated root.
@article{MZM_2005_78_1_a2,
author = {V. F. Butuzov and M. A. Terent'ev},
title = {Singular {Perturbation} {Elliptic} {Boundary-Value} {Problems} in the {Case} of a {Nonisolated} {Root} of the {Degenerate} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {26--36},
year = {2005},
volume = {78},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/}
}
TY - JOUR AU - V. F. Butuzov AU - M. A. Terent'ev TI - Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation JO - Matematičeskie zametki PY - 2005 SP - 26 EP - 36 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/ LA - ru ID - MZM_2005_78_1_a2 ER -
%0 Journal Article %A V. F. Butuzov %A M. A. Terent'ev %T Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation %J Matematičeskie zametki %D 2005 %P 26-36 %V 78 %N 1 %U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/ %G ru %F MZM_2005_78_1_a2
V. F. Butuzov; M. A. Terent'ev. Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR
[2] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed elliptic problems in the case of exchange of stabilities”, J. Differential Equations, 169 (2001), 373–395 | DOI | MR | Zbl
[3] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York–London, 1992 | MR
[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka; Fizmatlit, M., 1996 | MR