Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a singularly perturbed elliptic equation (the Neumann boundary-value problem), we prove a theorem on the passage to the limit for the case in which the degenerate equation has a nonisolated root.
@article{MZM_2005_78_1_a2,
     author = {V. F. Butuzov and M. A. Terent'ev},
     title = {Singular {Perturbation} {Elliptic} {Boundary-Value} {Problems} in the {Case} of a {Nonisolated} {Root} of the {Degenerate} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - M. A. Terent'ev
TI  - Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation
JO  - Matematičeskie zametki
PY  - 2005
SP  - 26
EP  - 36
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/
LA  - ru
ID  - MZM_2005_78_1_a2
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A M. A. Terent'ev
%T Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation
%J Matematičeskie zametki
%D 2005
%P 26-36
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/
%G ru
%F MZM_2005_78_1_a2
V. F. Butuzov; M. A. Terent'ev. Singular Perturbation Elliptic Boundary-Value Problems in the Case of a Nonisolated Root of the Degenerate Equation. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a2/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[2] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed elliptic problems in the case of exchange of stabilities”, J. Differential Equations, 169 (2001), 373–395 | DOI | MR | Zbl

[3] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York–London, 1992 | MR

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka; Fizmatlit, M., 1996 | MR