Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 140-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that an arbitrary irreducible continuous unitary projective representation of a simple Hermitian symmetric Lie group is generated by a strongly continuous pure unitary pseudorepresentation of the adjoint group of the Lie group.
@article{MZM_2005_78_1_a13,
     author = {A. I. Shtern},
     title = {Projective {Representations} and {Pure} {Pseudorepresentations} of {Hermitian} {Symmetric} {Simple} {Lie} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {140--146},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups
JO  - Matematičeskie zametki
PY  - 2005
SP  - 140
EP  - 146
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/
LA  - ru
ID  - MZM_2005_78_1_a13
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups
%J Matematičeskie zametki
%D 2005
%P 140-146
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/
%G ru
%F MZM_2005_78_1_a13
A. I. Shtern. Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 140-146. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/

[1] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[2] Bargmann V., “On unitary ray representations of continuous groups”, Ann. of Math. (2), 59:1 (1954), 1–46 | DOI | MR | Zbl

[3] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funktsion. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl

[4] Shtern A. I., “Quasi-symmetry, I”, Russian J. Math. Phys., 2:3 (1994), 353–382 | Zbl

[5] Shtern A. I., “Deformatsiya neprivodimykh unitarnykh predstavlenii diskretnoi serii ermitovo simmetricheskikh prostykh grupp Li v klasse chistykh psevdopredstavlenii”, Matem. zametki, 73:3 (2003), 478–490 | MR

[6] Shtern A. I., “Projective irreducible unitary representations of Hermitian symmetric simple Lie groups are generated by pure pseudorepresentations”, Adv. Stud. Contemp. Math. (Kyungshang), 9:1 (2004), 1–6 | MR | Zbl

[7] Shtern A. I., Ustoichivost predstavlenii i psevdokharaktery, Doklad na Lomonosovskikh chteniyakh, MGU, M., 1983

[8] Shtern A. I., “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional”, Acta Appl. Math., 68:1–3 (2001), 105–121 | DOI | MR | Zbl

[9] Shtern A. I., “Strukturnye svoistva i ogranichennye veschestvennye nepreryvnye $2$-kogomologii lokalno kompaktnykh grupp”, Funktsion. analiz i ego prilozh., 35:4 (2001), 67–80 | MR | Zbl

[10] Shtern A. I., “Bounded continuous real $2$-cocycles on simply connected simple Lie groups and their applications”, Russian J. Math. Phys., 8:1 (2001), 115–126

[11] Shtern A. I., “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups”, Ann. Global Anal. Geom., 20:3 (2001), 199–221 | DOI | Zbl

[12] Shtern A. I., “Psevdokharakter, opredelennyi simvolom Rademakhera”, UMN, 45:3 (1990), 197–198 | MR | Zbl