Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_1_a13, author = {A. I. Shtern}, title = {Projective {Representations} and {Pure} {Pseudorepresentations} of {Hermitian} {Symmetric} {Simple} {Lie} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {140--146}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/} }
TY - JOUR AU - A. I. Shtern TI - Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups JO - Matematičeskie zametki PY - 2005 SP - 140 EP - 146 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/ LA - ru ID - MZM_2005_78_1_a13 ER -
A. I. Shtern. Projective Representations and Pure Pseudorepresentations of Hermitian Symmetric Simple Lie Groups. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 140-146. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a13/
[1] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964
[2] Bargmann V., “On unitary ray representations of continuous groups”, Ann. of Math. (2), 59:1 (1954), 1–46 | DOI | MR | Zbl
[3] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funktsion. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl
[4] Shtern A. I., “Quasi-symmetry, I”, Russian J. Math. Phys., 2:3 (1994), 353–382 | Zbl
[5] Shtern A. I., “Deformatsiya neprivodimykh unitarnykh predstavlenii diskretnoi serii ermitovo simmetricheskikh prostykh grupp Li v klasse chistykh psevdopredstavlenii”, Matem. zametki, 73:3 (2003), 478–490 | MR
[6] Shtern A. I., “Projective irreducible unitary representations of Hermitian symmetric simple Lie groups are generated by pure pseudorepresentations”, Adv. Stud. Contemp. Math. (Kyungshang), 9:1 (2004), 1–6 | MR | Zbl
[7] Shtern A. I., Ustoichivost predstavlenii i psevdokharaktery, Doklad na Lomonosovskikh chteniyakh, MGU, M., 1983
[8] Shtern A. I., “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional”, Acta Appl. Math., 68:1–3 (2001), 105–121 | DOI | MR | Zbl
[9] Shtern A. I., “Strukturnye svoistva i ogranichennye veschestvennye nepreryvnye $2$-kogomologii lokalno kompaktnykh grupp”, Funktsion. analiz i ego prilozh., 35:4 (2001), 67–80 | MR | Zbl
[10] Shtern A. I., “Bounded continuous real $2$-cocycles on simply connected simple Lie groups and their applications”, Russian J. Math. Phys., 8:1 (2001), 115–126
[11] Shtern A. I., “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups”, Ann. Global Anal. Geom., 20:3 (2001), 199–221 | DOI | Zbl
[12] Shtern A. I., “Psevdokharakter, opredelennyi simvolom Rademakhera”, UMN, 45:3 (1990), 197–198 | MR | Zbl