@article{MZM_2005_78_1_a11,
author = {E. V. Sokolov},
title = {On the {Approximability} by {Finite} $p${-Groups} of {Free} {Products} of {Groups} with {Normal} {Amalgamation}},
journal = {Matemati\v{c}eskie zametki},
pages = {125--131},
year = {2005},
volume = {78},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a11/}
}
E. V. Sokolov. On the Approximability by Finite $p$-Groups of Free Products of Groups with Normal Amalgamation. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 125-131. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a11/
[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovskogo gos. ped. in-ta, 18 (1958), 49–60
[2] Allenby R. B. J. T., Gregorac R. J., “On locally extended residually finite groups”, Lecture Notes in Math., 319, 1973, 9–17 | MR | Zbl
[3] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1964), 301–305 | DOI | MR | Zbl
[4] Sokolov E. V., “Ob approksimiruemosti konechnymi $p$-gruppami nekotorykh svobodnykh proizvedenii s ob'edinennoi podgruppoi”, Chebyshevskii sb., 3:1 (2002), 97–102 | MR | Zbl
[5] Sokolov E. V., “Zamechanie ob otdelimosti podgrupp v klasse konechnykh $\pi$-grupp”, Matem. zametki, 73:6 (2003), 904–909 | MR | Zbl
[6] Sokolov E. V., Ob otdelimosti tsiklicheskikh podgrupp v svobodnykh proizvedeniyakh dvukh grupp s ob'edinennoi podgruppoi, Dep. VINITI 12.07.2002 No. 1325-V2002, Ivanovskii gos. un-t, Ivanovo, 2002
[7] Azarov D. N., “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Matem. zametki, 64:1 (1998), 3–8 | MR | Zbl
[8] Kim G., Tang C. Y., “On generalized free products of residually finite $p$-groups”, J. Algebra, 201 (1998), 317–327 | DOI | MR | Zbl
[9] Sokolov E. V., “On the cyclic subgroup separability of free products of two groups with amalgamated subgroup”, Lobachevskii J. Math., 11 (2002), 27–38 | MR | Zbl
[10] Yakushev A. V., “Approksimiruemost konechnymi $p$-gruppami rasscheplyayuschikhsya rasshirenii grupp”, Nauchn. trudy Ivanovskogo gos. un-ta. Matem., 2000, no. 3, 119–124