Weight Lemma
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 115-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we give the first complete presentation of author's proof of the Weight Lemma, which lies at the basis of the proof of Cartan's conjecture from the theory of meromorphic curves.
@article{MZM_2005_78_1_a10,
     author = {E. I. Nochka},
     title = {Weight {Lemma}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--124},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a10/}
}
TY  - JOUR
AU  - E. I. Nochka
TI  - Weight Lemma
JO  - Matematičeskie zametki
PY  - 2005
SP  - 115
EP  - 124
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a10/
LA  - ru
ID  - MZM_2005_78_1_a10
ER  - 
%0 Journal Article
%A E. I. Nochka
%T Weight Lemma
%J Matematičeskie zametki
%D 2005
%P 115-124
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a10/
%G ru
%F MZM_2005_78_1_a10
E. I. Nochka. Weight Lemma. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 115-124. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a10/

[1] Cartan H., “Sur les zéros de combinaisons linéaires de $p$ fonctions holomorphes données”, Mathematica (Cluj), 7 (1933), 5–31 | Zbl

[2] Chekalkin N. S., Teoremy edinstvennosti teorii raspredeleniya znachenii i spetsialnye klassy golomorfnykh otobrazhenii, Diss. ... k. f.-m. n., 1987

[3] Chen W., “Defect relation for degenerate meromorphic maps”, Trans. Amer. Math. Soc., 319 (1990), 499–515 | DOI | MR | Zbl

[4] Ru M., Wong P. M., “Integral points of $\mathbf P^n(\mathbf K)\setminus\{2n+1$ hyperplanes in general position$\}$”, Invent. Math., 106 (1991), 195–216 | DOI | Zbl

[5] Vojta P., “On Cartan's theorem and Cartan's conjecture”, Amer. J. Math., 119 (1997), 1–17 | DOI | MR | Zbl

[6] Fujimoto H., Value Distribution Theory of the Gauss Maps of Minimal Surfaces in $\mathbf{R}^m$, Aspects of Math., E21, Friedr. Vieweg Sohn, Braunschweig, 1993 | MR

[7] Nochka E. I., “Ob odnoi teoreme iz lineinoi algebry”, Izv. AN MSSR. Ser. fiz.-mat. i tekhn. nauk, 1982, no. 3, 29–33 | Zbl

[8] Shiffman B., “The second main theorem for log canonical $\mathbf{R}$-divisors”, Geometric Complex Analysis, eds. J. Noguchi et al., World Scientific, Singapore, 1995, 1–13