A Consistent Estimator of the Entropy of Measures and Dynamical Systems
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 903-916.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a new invariant of measures and dynamical systems, called statentropy, is described. A statistical estimator for statentropy, computed without using auxiliary estimates of measures, is constructed. It is proved that the proposed statistical estimator is consistent under fairly general restrictions. We show that for exact dimensional measures, statentropy coincides with the Hausdorff dimension of the measure, and for ergodic dynamical systems, it coincides with the metric entropy of the map.
@article{MZM_2005_77_6_a8,
     author = {E. A. Timofeev},
     title = {A {Consistent} {Estimator} of the {Entropy} of {Measures} and {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {903--916},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a8/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - A Consistent Estimator of the Entropy of Measures and Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2005
SP  - 903
EP  - 916
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a8/
LA  - ru
ID  - MZM_2005_77_6_a8
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T A Consistent Estimator of the Entropy of Measures and Dynamical Systems
%J Matematičeskie zametki
%D 2005
%P 903-916
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a8/
%G ru
%F MZM_2005_77_6_a8
E. A. Timofeev. A Consistent Estimator of the Entropy of Measures and Dynamical Systems. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 903-916. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a8/

[1] Billingslei P., Ergodicheskaya teoriya i informatsiya, Mir, M., 1969

[2] Martin N., Inglend Dzh., Matematicheskaya teoriya entropii, Mir, M., 1988 | MR

[3] Sinai Ya. G., Vvedenie v ergodicheskuyu teoriyu, Izd-vo EGU, Erevan, 1973

[4] Pesin Ya., Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Univ. Press, Chicago, 1997 | MR

[5] Dobrushin R. L., “Uproschennyi metod eksperimentalnoi otsenki entropii statsionarnoi posledovatelnosti”, Teoriya veroyatnosti i ee primen., 3:4 (1958), 462–464 | Zbl

[6] Vatutin V. A., Mikhailov V. G., “Statisticheskoe otsenivanie entropii diskretnykh sluchainykh velichin s bolshim chislom iskhodov”, UMN, 50:5 (1995), 121–134 | MR | Zbl

[7] Maiorov V. V., Timofeev E. A., “Sostoyatelnaya otsenka razmernosti mnogoobrazii i samopodobnykh fraktalov”, ZhVMiMF, 39:10 (1999), 1721–1729 | MR | Zbl

[8] Maiorov V. V., Timofeev E. A., “Statisticheskaya otsenka obobschennykh razmernostei”, Matem. zametki, 71:5 (2002), 697–712 | MR | Zbl

[9] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[11] Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979

[12] Barreira L., Pesin Ya., Schmeling J., Dimension and product structure of hyperbolic measures, IST Preprint 26/99, 1999 | Zbl