Interpolation of Rational Approximation Spaces Belonging to the Besov Class
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 877-885.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Peetre real interpolation method is realized for the Besov class of spaces of analytic functions on the circle. We obtain a description of interpolation norms with the help of difference-differential constructions. We consider rational approximation spaces in the $BMOA$ and $H_p$ norms.
@article{MZM_2005_77_6_a6,
     author = {V. L. Kreptogorskii},
     title = {Interpolation of {Rational} {Approximation} {Spaces} {Belonging} to the {Besov} {Class}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {877--885},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a6/}
}
TY  - JOUR
AU  - V. L. Kreptogorskii
TI  - Interpolation of Rational Approximation Spaces Belonging to the Besov Class
JO  - Matematičeskie zametki
PY  - 2005
SP  - 877
EP  - 885
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a6/
LA  - ru
ID  - MZM_2005_77_6_a6
ER  - 
%0 Journal Article
%A V. L. Kreptogorskii
%T Interpolation of Rational Approximation Spaces Belonging to the Besov Class
%J Matematičeskie zametki
%D 2005
%P 877-885
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a6/
%G ru
%F MZM_2005_77_6_a6
V. L. Kreptogorskii. Interpolation of Rational Approximation Spaces Belonging to the Besov Class. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 877-885. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a6/

[1] Peller V. V., “Operatory Gankelya klassa $\sigma_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113:4 (1980), 538–581 | MR | Zbl

[2] Peller V. V., “Opisanie operatorov Gankelya klassa $\sigma_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122:4 (1983), 481–510 | MR

[3] Pekarskii A. A., “Klassy analiticheskikh funktsii, opredelennye nailuchshimi priblizheniyami v $H_p$”, Matem. sb., 127:1 (1985), 3–39

[4] Pekarskii A. A., “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matem. sb., 133:1 (1987), 86–102 | MR

[5] Netrusov Yu. V., “Interpolyatsiya (veschestvennyi metod) prostranstv gladkikh funktsii”, Dokl. RAN, 325:6 (1992), 1120–1123 | MR | Zbl

[6] Netrusov Yu. V., “Nelineinaya approksimatsiya funktsii iz prostranstv Besova–Lorentsa v ravnomernoi metrike”, Zapiski nauch. sem. LOMI, 204, Nauka, L., 1993, 61–81

[7] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[8] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[9] Krepkogorskii V. L., “Interpolyatsiya v prostranstvakh Lizorkina–Tribelya i Besova”, Matem. sb., 185:7 (1994), 63–76 | MR

[10] Oswald P., “On Besov–Hardy–Sobolev spaces of analytic functions in the unit disc”, Czechoslovak. Math. J., 33 (108):3 (1983), 408–426 | MR | Zbl

[11] Freitag D., “Real interpolation of weighted $L_p$-spaces”, Math. Nachr., 86 (1978), 15–18 | DOI | Zbl