Length of the Sum and Product of Algebraic Numbers
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 854-860.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider products of lengths of algebraic numbers whose sum or product is a chosen algebraic number. These products are used to construct a new height function for algebraic numbers. With the help of this function, a metric on the set of all algebraic numbers, which induces the discrete topology, is introduced.
@article{MZM_2005_77_6_a4,
     author = {A. Dubickas and C. Smyth},
     title = {Length of the {Sum} and {Product} of {Algebraic} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--860},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/}
}
TY  - JOUR
AU  - A. Dubickas
AU  - C. Smyth
TI  - Length of the Sum and Product of Algebraic Numbers
JO  - Matematičeskie zametki
PY  - 2005
SP  - 854
EP  - 860
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/
LA  - ru
ID  - MZM_2005_77_6_a4
ER  - 
%0 Journal Article
%A A. Dubickas
%A C. Smyth
%T Length of the Sum and Product of Algebraic Numbers
%J Matematičeskie zametki
%D 2005
%P 854-860
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/
%G ru
%F MZM_2005_77_6_a4
A. Dubickas; C. Smyth. Length of the Sum and Product of Algebraic Numbers. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 854-860. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/

[1] Dubickas A., Smyth C. J., “On the metric Mahler measure”, J. Number Theory, 86 (2001), 368–387 | DOI | Zbl

[2] Dubickas A., Smyth C. J., “On metric heights”, Period. Math. Hungar., 42 (2003), 135–155 | DOI

[3] Schmidt W., “Heights of points on subvarieties of $\mathbb G_m^n$”, Contemp. Math., 210 (1998), 97–99 | Zbl

[4] Dubickas A., “Asymptotic density of surds with stable height”, Acta Appl. Math., 78 (2003), 99–102 | DOI | Zbl

[5] Schinzel A., Polynomials with Special Regard to Reducibility, Cambridge Univ. Press, Cambridge, 2000

[6] Feldman N. I., Priblizheniya algebraicheskikh chisel, Izd-vo Moskovskogo un-ta, M., 1981

[7] Waldschmidt M., Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, Berlin–New York, 2000