Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_6_a4, author = {A. Dubickas and C. Smyth}, title = {Length of the {Sum} and {Product} of {Algebraic} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {854--860}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/} }
A. Dubickas; C. Smyth. Length of the Sum and Product of Algebraic Numbers. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 854-860. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a4/
[1] Dubickas A., Smyth C. J., “On the metric Mahler measure”, J. Number Theory, 86 (2001), 368–387 | DOI | Zbl
[2] Dubickas A., Smyth C. J., “On metric heights”, Period. Math. Hungar., 42 (2003), 135–155 | DOI
[3] Schmidt W., “Heights of points on subvarieties of $\mathbb G_m^n$”, Contemp. Math., 210 (1998), 97–99 | Zbl
[4] Dubickas A., “Asymptotic density of surds with stable height”, Acta Appl. Math., 78 (2003), 99–102 | DOI | Zbl
[5] Schinzel A., Polynomials with Special Regard to Reducibility, Cambridge Univ. Press, Cambridge, 2000
[6] Feldman N. I., Priblizheniya algebraicheskikh chisel, Izd-vo Moskovskogo un-ta, M., 1981
[7] Waldschmidt M., Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, Berlin–New York, 2000