Asymptotic Series for Bessel Polynomials
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 948-950.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2005_77_6_a16,
     author = {R. F. Khabibullin},
     title = {Asymptotic {Series} for {Bessel} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {948--950},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/}
}
TY  - JOUR
AU  - R. F. Khabibullin
TI  - Asymptotic Series for Bessel Polynomials
JO  - Matematičeskie zametki
PY  - 2005
SP  - 948
EP  - 950
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/
LA  - ru
ID  - MZM_2005_77_6_a16
ER  - 
%0 Journal Article
%A R. F. Khabibullin
%T Asymptotic Series for Bessel Polynomials
%J Matematičeskie zametki
%D 2005
%P 948-950
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/
%G ru
%F MZM_2005_77_6_a16
R. F. Khabibullin. Asymptotic Series for Bessel Polynomials. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 948-950. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/

[1] Gonchar A. A., Rakhmanov E. A., Matem. sb., 134:3 (1987), 306–352 | MR | Zbl

[2] Aptekarev A. I., Matem. sb., 193:1 (2002), 3–72 | MR | Zbl

[3] Fokas A., Its A., Kitaev A., Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl

[4] Deift P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Reprint of the 1998 original, Amer. Math. Soc., Providence, RI, 2000 | MR

[5] Deift P. et al., Intern. Math. Res. Notes, 16 (1997), 759–782 | DOI | MR | Zbl

[6] Deift P. et al., Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Deift P. et al., Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Ercolani N. M., McLaughlin K. D. T.-R., “Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques, and application to graphical enumeration”, IMRM, 14 (2003), 755–820 | MR | Zbl

[9] Vanlessen M., The Riemann–Hilbert Approach to Obtain Strong Asymptotics for Orthogonal Polynomials and Universality in Random Matrix Theory, Ph.D. thesis, Leuven, 2003