Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_6_a16, author = {R. F. Khabibullin}, title = {Asymptotic {Series} for {Bessel} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {948--950}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/} }
R. F. Khabibullin. Asymptotic Series for Bessel Polynomials. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 948-950. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a16/
[1] Gonchar A. A., Rakhmanov E. A., Matem. sb., 134:3 (1987), 306–352 | MR | Zbl
[2] Aptekarev A. I., Matem. sb., 193:1 (2002), 3–72 | MR | Zbl
[3] Fokas A., Its A., Kitaev A., Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[4] Deift P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Reprint of the 1998 original, Amer. Math. Soc., Providence, RI, 2000 | MR
[5] Deift P. et al., Intern. Math. Res. Notes, 16 (1997), 759–782 | DOI | MR | Zbl
[6] Deift P. et al., Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Deift P. et al., Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] Ercolani N. M., McLaughlin K. D. T.-R., “Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques, and application to graphical enumeration”, IMRM, 14 (2003), 755–820 | MR | Zbl
[9] Vanlessen M., The Riemann–Hilbert Approach to Obtain Strong Asymptotics for Orthogonal Polynomials and Universality in Random Matrix Theory, Ph.D. thesis, Leuven, 2003