On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 814-831
Cet article a éte moissonné depuis la source Math-Net.Ru
For interpolation processes by algebraic polynomials of degree $n$ from values at uniform nodes of an $m$-simplex, where $m\ge2$, we obtain the order of growth in $n$ of the Lebesgue constants, which coincides with that in the one-dimensional case for which Turetskii obtained an asymptotics earlier.
@article{MZM_2005_77_6_a1,
author = {N. V. Baidakova},
title = {On the {Order} of the {Lebesgue} {Constants} for {Interpolation} by {Algebraic} {Polynomials} from {Values} at {Uniform} {Nodes} of a {Simplex}},
journal = {Matemati\v{c}eskie zametki},
pages = {814--831},
year = {2005},
volume = {77},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/}
}
TY - JOUR AU - N. V. Baidakova TI - On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex JO - Matematičeskie zametki PY - 2005 SP - 814 EP - 831 VL - 77 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/ LA - ru ID - MZM_2005_77_6_a1 ER -
N. V. Baidakova. On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 814-831. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/
[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[2] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1971
[3] Nicolaidis R. A., “On the class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR
[4] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysheishaya shkola, Minsk, 1968