On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 814-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

For interpolation processes by algebraic polynomials of degree $n$ from values at uniform nodes of an $m$-simplex, where $m\ge2$, we obtain the order of growth in $n$ of the Lebesgue constants, which coincides with that in the one-dimensional case for which Turetskii obtained an asymptotics earlier.
@article{MZM_2005_77_6_a1,
     author = {N. V. Baidakova},
     title = {On the {Order} of the {Lebesgue} {Constants} for {Interpolation} by {Algebraic} {Polynomials} from {Values} at {Uniform} {Nodes} of a {Simplex}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {814--831},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex
JO  - Matematičeskie zametki
PY  - 2005
SP  - 814
EP  - 831
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/
LA  - ru
ID  - MZM_2005_77_6_a1
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex
%J Matematičeskie zametki
%D 2005
%P 814-831
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/
%G ru
%F MZM_2005_77_6_a1
N. V. Baidakova. On the Order of the Lebesgue Constants for Interpolation by Algebraic Polynomials from Values at Uniform Nodes of a Simplex. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 814-831. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a1/

[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[2] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1971

[3] Nicolaidis R. A., “On the class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR

[4] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysheishaya shkola, Minsk, 1968