Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 727-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the study started in [1–5]. We show that the construction of abnormal traces used in [1, 2] can adequately be expressed by using the construction of singular symmetric functionals developed in [4, 5]. We completely describe the measurable elements on which all singular symmetric functionals from a certain class take the same values [1]. This result significantly complements the description of the structure of the set of measurable operators even in the special case studied in [1]. For natural subsets of the set of singular symmetric functionals, we obtain new results concerning their normalization properties.
@article{MZM_2005_77_5_a6,
     author = {S. Lord and A. A. Sedaev and F. A. Sukochev},
     title = {Connes-Dixmier {Traces,} {Singular} {Symmetric} {Functionals,} and the {Notion} of {Connes} {Measurable} {Element}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {727--732},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a6/}
}
TY  - JOUR
AU  - S. Lord
AU  - A. A. Sedaev
AU  - F. A. Sukochev
TI  - Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element
JO  - Matematičeskie zametki
PY  - 2005
SP  - 727
EP  - 732
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a6/
LA  - ru
ID  - MZM_2005_77_5_a6
ER  - 
%0 Journal Article
%A S. Lord
%A A. A. Sedaev
%A F. A. Sukochev
%T Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element
%J Matematičeskie zametki
%D 2005
%P 727-732
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a6/
%G ru
%F MZM_2005_77_5_a6
S. Lord; A. A. Sedaev; F. A. Sukochev. Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 727-732. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a6/

[1] Connes A., Noncommutative Geometry, Academic Press, San Diego, 1994 | Zbl

[2] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris. Sér. A, 262 (1966), 1107–1108 | MR | Zbl

[3] Dodds P., de Pagter B., Semenov E., Sukochev F., “Symmetric functionals and singular traces”, Positivity, 2 (1998), 47–75 | DOI | MR | Zbl

[4] Dodds P. G., de Pagter B., Sedaev A. A., Semenov E. M., Sukochev F. A., “Singulyarnye simmetrichnye funktsionaly”, Zapiski nauch. sem. POMI, 290, POMI, SPb., 2002, 42–71 | Zbl

[5] Dodds P. G., de Pagter B., Sedaev A. A., Semenov E. M., Sukochev F. A., “Singulyarnye simmetrichnye funktsionaly i banakhovy predely s dopolnitelnymi svoistvami invariantnosti”, Izv. AN. Ser. matem., 67:6 (2003), 111–136 | MR | Zbl

[6] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[7] Lorentz G., “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR