Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 775-787

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathscr P$ is a system of continuous subharmonic functions in the unit disk $\mathbb D$ and $A_{\mathscr P}$ is the class of holomorphic functions $f$ in $\mathbb D$ such that $\log|f(z)|\le B_fp_f(z)+C_f$, $z\in\mathbb D$, where $B_f$ and $C_f$ are constants and $p_f\in\mathscr P$. We obtain sufficient conditions for a given number sequence $\Lambda=\{\lambda_n\}\subset\mathbb D$ to be a subsequence of zeros of some nonzero holomorphic function from $A_{\mathscr P}$, i.e., $\Lambda$ is a nonuniqueness sequence for $A_{\mathscr P}$.
@article{MZM_2005_77_5_a11,
     author = {L. Yu. Cherednikova},
     title = {Nonuniqueness {Sequences} for {Weighted} {Algebras} of {Holomorphic} {Functions} in the {Unit} {Circle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {775--787},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/}
}
TY  - JOUR
AU  - L. Yu. Cherednikova
TI  - Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle
JO  - Matematičeskie zametki
PY  - 2005
SP  - 775
EP  - 787
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/
LA  - ru
ID  - MZM_2005_77_5_a11
ER  - 
%0 Journal Article
%A L. Yu. Cherednikova
%T Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle
%J Matematičeskie zametki
%D 2005
%P 775-787
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/
%G ru
%F MZM_2005_77_5_a11
L. Yu. Cherednikova. Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 775-787. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/