Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 775-787
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $\mathscr P$ is a system of continuous subharmonic functions in the unit disk $\mathbb D$ and $A_{\mathscr P}$ is the class of holomorphic functions $f$ in $\mathbb D$ such that $\log|f(z)|\le B_fp_f(z)+C_f$, $z\in\mathbb D$, where $B_f$ and $C_f$ are constants and $p_f\in\mathscr P$. We obtain sufficient conditions for a given number sequence $\Lambda=\{\lambda_n\}\subset\mathbb D$ to be a subsequence of zeros of some nonzero holomorphic function from $A_{\mathscr P}$, i.e., $\Lambda$ is a nonuniqueness sequence for $A_{\mathscr P}$.
@article{MZM_2005_77_5_a11,
author = {L. Yu. Cherednikova},
title = {Nonuniqueness {Sequences} for {Weighted} {Algebras} of {Holomorphic} {Functions} in the {Unit} {Circle}},
journal = {Matemati\v{c}eskie zametki},
pages = {775--787},
publisher = {mathdoc},
volume = {77},
number = {5},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/}
}
TY - JOUR AU - L. Yu. Cherednikova TI - Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle JO - Matematičeskie zametki PY - 2005 SP - 775 EP - 787 VL - 77 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/ LA - ru ID - MZM_2005_77_5_a11 ER -
L. Yu. Cherednikova. Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 775-787. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a11/