Lower bounds for linear forms in values of polylogarithms
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 623-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we use Hermite-Padé approximations of the second kind to obtain a lower bound for the absolute value of a linear form, with integer coefficients, in values of polylogarithmic functions at a rational point. This estimate takes into account the growth of all coefficients of the linear form.
@article{MZM_2005_77_4_a14,
     author = {T. G. Hessami Pilehrood and Kh. Hessami Pilehrood},
     title = {Lower bounds for linear forms in values of polylogarithms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {623--629},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a14/}
}
TY  - JOUR
AU  - T. G. Hessami Pilehrood
AU  - Kh. Hessami Pilehrood
TI  - Lower bounds for linear forms in values of polylogarithms
JO  - Matematičeskie zametki
PY  - 2005
SP  - 623
EP  - 629
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a14/
LA  - ru
ID  - MZM_2005_77_4_a14
ER  - 
%0 Journal Article
%A T. G. Hessami Pilehrood
%A Kh. Hessami Pilehrood
%T Lower bounds for linear forms in values of polylogarithms
%J Matematičeskie zametki
%D 2005
%P 623-629
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a14/
%G ru
%F MZM_2005_77_4_a14
T. G. Hessami Pilehrood; Kh. Hessami Pilehrood. Lower bounds for linear forms in values of polylogarithms. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 623-629. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a14/

[1] Fel'dman N. I., Nesterenko Yu. V., Number Theory. IV. Transcendental Numbers, Encyclopaedia of Math. Sci., 44, Springer-Verlag, Berlin, 1998 | MR

[2] Baker A., “On some Diophantine inequalities involving the exponential function”, Canad. J. Math., 17 (1965), 616–626 | MR | Zbl

[3] Feldman N. I., “Otsenki snizu dlya nekotorykh lineinykh form”, Vestn. MGU. Ser. 1. Matem., mekh., 1967, no. 2, 63–72

[4] Väänänen K., “On lower estimates for linear forms involving certain transcendental numbers”, Bull. Austral. Math. Soc., 14 (1976), 161–179 | DOI | MR | Zbl

[5] Väänänen K., “On linear forms of the values of one class of $E$-functions”, Acta Univ. Ouluen. Ser. A, 1976, no. 41, 1–19

[6] Zudilin V. V., “Ob otsenkakh snizu mnogochlenov ot znachenii nekotorykh tselykh funktsii”, Matem. sb., 187:12 (1996), 57–86 | MR | Zbl

[7] Feldman N. I., “Ob odnoi lineinoi forme”, Acta Arith., 21 (1972), 347–355 | MR | Zbl

[8] Sorokin V. N., “Ob irratsionalnosti znachenii gipergeometricheskikh funktsii”, Matem. sb., 127 (169):2 (6) (1985), 245–258 | Zbl

[9] Galochkin A. I., “Otsenki snizu lineinykh form ot znachenii nekotorykh $G$-funktsii”, Matem. zametki, 18:4 (1975), 541–552 | Zbl

[10] Khessami Pilerud T., “Otsenka snizu odnoi lineinoi formy”, Matem. zametki, 66:4 (1999), 617–623 | MR

[11] Khessami Pilerud T., “Otsenki snizu lineinykh form ot znachenii nekotorykh gipergeometricheskikh funktsii”, Matem. zametki, 67:3 (2000), 441–451

[12] Chudnovsky G. V., “Padé approximations to the generalized hypergeometric functions, I”, J. Math. Pures Appl., 58 (1979), 445–476 | Zbl

[13] Gutnik L. A., “O lineinoi nezavisimosti nad $\mathbb Q$ dilogarifmov v ratsionalnykh tochkakh”, UMN, 37:5 (1982), 179–180 | Zbl

[14] Hata M., “On the linear independence of the values of polylogarithmic functions”, J. Math. Pures Appl., 69:2 (1990), 133–173 | Zbl

[15] Sorokin V. N., “Approksimatsii Ermita–Pade polilogarifmov”, Izv. vuzov. Matem., 1994, no. 5, 49–59 | Zbl