On metrics arising on surfaces of constant mean curvature
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 617-622
Cet article a éte moissonné depuis la source Math-Net.Ru
We formulate necessary and sufficient conditions on a Riemannian metric that ensure its embeddability in a three-dimensional space of constant curvature as a surface of constant mean curvature. This theorem is a generalization of a number of classical results, in particular, the Ricci theorem, which gives a description of metrics arising on minimal surfaces in $\mathbb R^3$.
@article{MZM_2005_77_4_a13,
author = {V. T. Fomenko},
title = {On metrics arising on surfaces of constant mean curvature},
journal = {Matemati\v{c}eskie zametki},
pages = {617--622},
year = {2005},
volume = {77},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/}
}
V. T. Fomenko. On metrics arising on surfaces of constant mean curvature. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 617-622. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/
[1] Blaschke W., Einführung in die Differentialgeometrie, Springer, Berlin, 1950 | MR | Zbl
[2] Aminov Yu. A., Minimalnye poverkhnosti, Izd-vo KhGU, Kharkov, 1978
[3] Pinl M., “Über einen Satz von G. Ricci–Curbastro und die Gaussche Krümmung der Minimalflächen”, Arch. Math., 4 (1953), 369–373 | DOI | MR | Zbl
[4] Lawson H. B. Jr., “Some intrinsic characterizations of minimal surfaces”, J. Anal. Math., 24 (1971), 151–161 | DOI | MR | Zbl
[5] Lawson H. B. Jr., Minimal Varieties in Constant Curvature Manifolds, Ph. D. Thesis, Stanford University, Stanford, 1968
[6] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956