On metrics arising on surfaces of constant mean curvature
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 617-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate necessary and sufficient conditions on a Riemannian metric that ensure its embeddability in a three-dimensional space of constant curvature as a surface of constant mean curvature. This theorem is a generalization of a number of classical results, in particular, the Ricci theorem, which gives a description of metrics arising on minimal surfaces in $\mathbb R^3$.
@article{MZM_2005_77_4_a13,
     author = {V. T. Fomenko},
     title = {On metrics arising on surfaces of constant mean curvature},
     journal = {Matemati\v{c}eskie zametki},
     pages = {617--622},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - On metrics arising on surfaces of constant mean curvature
JO  - Matematičeskie zametki
PY  - 2005
SP  - 617
EP  - 622
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/
LA  - ru
ID  - MZM_2005_77_4_a13
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T On metrics arising on surfaces of constant mean curvature
%J Matematičeskie zametki
%D 2005
%P 617-622
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/
%G ru
%F MZM_2005_77_4_a13
V. T. Fomenko. On metrics arising on surfaces of constant mean curvature. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 617-622. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a13/

[1] Blaschke W., Einführung in die Differentialgeometrie, Springer, Berlin, 1950 | MR | Zbl

[2] Aminov Yu. A., Minimalnye poverkhnosti, Izd-vo KhGU, Kharkov, 1978

[3] Pinl M., “Über einen Satz von G. Ricci–Curbastro und die Gaussche Krümmung der Minimalflächen”, Arch. Math., 4 (1953), 369–373 | DOI | MR | Zbl

[4] Lawson H. B. Jr., “Some intrinsic characterizations of minimal surfaces”, J. Anal. Math., 24 (1971), 151–161 | DOI | MR | Zbl

[5] Lawson H. B. Jr., Minimal Varieties in Constant Curvature Manifolds, Ph. D. Thesis, Stanford University, Stanford, 1968

[6] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956