On the real zeros of functions of Mittag-Leffler type
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 592-599

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove an assertion allowing us to extend results related to the presence or absence of real zeros of functions of Mittag-Leffler type $$ E_{1/\alpha}(z;\mu)=\sum_{k=0}^\infty\frac{z^k}{\Gamma(\alpha k+\mu)} $$ for certain values of $\alpha$ and $\mu$ to more extensive ranges of these parameters. We give a geometric description of the sets of pairs $(\alpha,\mu)$ for which the function $E_{1/\alpha}(z;\mu)$ has and does not have real zeros.
@article{MZM_2005_77_4_a11,
     author = {A. V. Pskhu},
     title = {On the real zeros of functions of {Mittag-Leffler} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--599},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a11/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - On the real zeros of functions of Mittag-Leffler type
JO  - Matematičeskie zametki
PY  - 2005
SP  - 592
EP  - 599
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a11/
LA  - ru
ID  - MZM_2005_77_4_a11
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T On the real zeros of functions of Mittag-Leffler type
%J Matematičeskie zametki
%D 2005
%P 592-599
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a11/
%G ru
%F MZM_2005_77_4_a11
A. V. Pskhu. On the real zeros of functions of Mittag-Leffler type. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 592-599. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a11/