Covering of nonlinear maps on a cone in neighborhoods of irregular points
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 483-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse function theorems for smooth nonlinear maps defined on convex cones in Banach spaces in a neighborhood of an irregular point are considered. The corresponding covering theorem is proved. The proofs are based on a Banach open mapping theorem for convex cones in Banach spaces, which is also proved in the paper. Sufficient conditions for tangency to the zero set of a nonlinear map without a priori regularity assumptions are obtained.
@article{MZM_2005_77_4_a0,
     author = {A. V. Arutyunov},
     title = {Covering of nonlinear maps on a cone in neighborhoods of irregular points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--497},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Covering of nonlinear maps on a cone in neighborhoods of irregular points
JO  - Matematičeskie zametki
PY  - 2005
SP  - 483
EP  - 497
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/
LA  - ru
ID  - MZM_2005_77_4_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Covering of nonlinear maps on a cone in neighborhoods of irregular points
%J Matematičeskie zametki
%D 2005
%P 483-497
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/
%G ru
%F MZM_2005_77_4_a0
A. V. Arutyunov. Covering of nonlinear maps on a cone in neighborhoods of irregular points. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[2] Robinson S., “Stability theory for Systems of inequalities. Part II: differentiable nonlinear systems”, SIAM J. Numer. Anal., 13:4 (1976), 497–513 | DOI | Zbl

[3] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | Zbl

[4] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | Zbl

[5] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989

[7] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[8] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | Zbl

[9] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | Zbl

[10] Arutyunov A. V., “Teorema ob obratnoi funktsii na konuse v okrestnosti anormalnoi tochki”, Dokl. RAN, 389:1 (2003), 7–10 | Zbl

[11] Warga J., “Higher-order conditions for conical controllability”, SIAM J. Control Optimiz., 26:6 (1988), 1471–1480 | DOI | Zbl

[12] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach, Fizmatlit, M., 1999

[13] Izmailov A. F., “K usloviyam optimalnosti v ekstremalnykh zadachakh s neregulyarnymi ogranicheniyami-neravenstvami”, Matem. zametki, 66:1 (1999), 89–102