Covering of nonlinear maps on a cone in neighborhoods of irregular points
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 483-497

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse function theorems for smooth nonlinear maps defined on convex cones in Banach spaces in a neighborhood of an irregular point are considered. The corresponding covering theorem is proved. The proofs are based on a Banach open mapping theorem for convex cones in Banach spaces, which is also proved in the paper. Sufficient conditions for tangency to the zero set of a nonlinear map without a priori regularity assumptions are obtained.
@article{MZM_2005_77_4_a0,
     author = {A. V. Arutyunov},
     title = {Covering of nonlinear maps on a cone in neighborhoods of irregular points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--497},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Covering of nonlinear maps on a cone in neighborhoods of irregular points
JO  - Matematičeskie zametki
PY  - 2005
SP  - 483
EP  - 497
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/
LA  - ru
ID  - MZM_2005_77_4_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Covering of nonlinear maps on a cone in neighborhoods of irregular points
%J Matematičeskie zametki
%D 2005
%P 483-497
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/
%G ru
%F MZM_2005_77_4_a0
A. V. Arutyunov. Covering of nonlinear maps on a cone in neighborhoods of irregular points. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a0/