The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 412-423
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose all geodesics of two Riemannian metrics $g$ and $\overline g$ defined on a (connected, geodesically complete) manifold $M^n$ coincide. At each point $x\in M^n$, consider the common eigenvalues $\rho_1,\rho_2,\dots,\rho_n$ of the two metrics (we assume that $\rho_1\geqslant\rho_2\geqslant\dots\geqslant\rho_n$)) and the numbers
$$
\lambda_i=(\rho_1\rho_2\dotsb\rho_n)^{1/(n+1)}\frac1{\rho_i}.
$$.
We show that the numbers $\lambda_i$ are ordered over the entire manifold: for any two points $x$ and $y$ in M the number $\lambda_k(x)$ is not greater than $\lambda_{k+1}(y)$. If $\lambda_k(x)=\lambda_{k+1}(y)$, then there is a point $z\in M^n$ such that $\lambda_k(z)=\lambda_{k+1}(z)$. If the manifold is closed and all the common eigenvalues of the metrics are pairwise distinct at each point, then the manifold can be covered by the torus.
@article{MZM_2005_77_3_a7,
author = {V. S. Matveev},
title = {The eigenvalues of the {Sinyukov} mapping for geodesically equivalent metrics are globally ordered},
journal = {Matemati\v{c}eskie zametki},
pages = {412--423},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/}
}
TY - JOUR AU - V. S. Matveev TI - The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered JO - Matematičeskie zametki PY - 2005 SP - 412 EP - 423 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/ LA - ru ID - MZM_2005_77_3_a7 ER -
V. S. Matveev. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 412-423. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/