Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_3_a7, author = {V. S. Matveev}, title = {The eigenvalues of the {Sinyukov} mapping for geodesically equivalent metrics are globally ordered}, journal = {Matemati\v{c}eskie zametki}, pages = {412--423}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/} }
TY - JOUR AU - V. S. Matveev TI - The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered JO - Matematičeskie zametki PY - 2005 SP - 412 EP - 423 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/ LA - ru ID - MZM_2005_77_3_a7 ER -
V. S. Matveev. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 412-423. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/
[1] Mikesh I., “Geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Geometriya–2, Itogi nauki i tekhniki. Sovremennaya matem. i ee prilozh., 11, VINITI, M., 2002, 121–162 | MR | Zbl
[2] Sinyukov N. S., “K teorii geodezicheskikh otobrazhenii”, Dokl. AN SSSR, 169 (1966), 770–772 | Zbl
[3] Matveev V. S., Topalov P. J., “Quantum integrability of the Beltrami–Laplace operator as geodesic equivalence”, Math. Z., 238:4 (2001), 833–866 | DOI | Zbl
[4] Matveev V. S., Topalov P. I., “Geodezicheskaya ekvivalentnost metrik na poverkhnostyakh kak integriruemost ikh geodezicheskikh potokov”, Dokl. RAN, 367:6 (1999), 736–738 | Zbl
[5] Bolsinov A. V., Fomenko A. T., “Rimanovy metriki s integriruemymi geodezicheskimi potokami na poverkhnostyakh: lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | Zbl
[6] Igarashi M., Kiyohara K., Sugahara K., “Noncompact Liouville surfaces”, J. Math. Soc. Japan, 45:3 (1993), 460–479 | DOI
[7] Matveev V. S., “Geschlossene hyperbolische $3$-Mannigfaltigkeiten sind geodätsich starr”, Manuscripta Math., 105:3 (2001), 343–352 | DOI | Zbl
[8] Matveev V. S., “Three-manifolds admitting metrics with the same geodesics”, Math. Res. Lett., 9:2–3 (2002), 267–276 | Zbl
[9] Matveev V. S., “Low-dimensional manifolds admitting metrics with the same geodesics”, Contemporary Mathematics, 308, 2002, 229–243 | Zbl
[10] Matveev V. S., Topalov P. J., “Trajectory equivalence and corresponding integrals”, Regular and Chaotic Dynamics, 3 (1998), 29–44 | DOI
[11] Matveev V. S., Topalov P. J., “Geodesic equivalence via integrability”, Geometriae Dedicata, 96 (2003), 91–115 | DOI | Zbl
[12] Bolsinov A. V., Fomenko A. T., Matveev V. S., Riemannian metrics with integrable geodesic flows on surfaces: local and global geometry, Max-Planck-Institute for Mathematics Preprint Series No. 120, MPIM, Bonn, 1998
[13] Topalov P. J., Matveev V. S., Geodesic equivalence and integrability, Max-Planck-Institute for Mathematics Preprint Series No. 74, MPIM, Bonn, 1998
[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979