The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 412-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose all geodesics of two Riemannian metrics $g$ and $\overline g$ defined on a (connected, geodesically complete) manifold $M^n$ coincide. At each point $x\in M^n$, consider the common eigenvalues $\rho_1,\rho_2,\dots,\rho_n$ of the two metrics (we assume that $\rho_1\geqslant\rho_2\geqslant\dots\geqslant\rho_n$)) and the numbers $$ \lambda_i=(\rho_1\rho_2\dotsb\rho_n)^{1/(n+1)}\frac1{\rho_i}. $$. We show that the numbers $\lambda_i$ are ordered over the entire manifold: for any two points $x$ and $y$ in M the number $\lambda_k(x)$ is not greater than $\lambda_{k+1}(y)$. If $\lambda_k(x)=\lambda_{k+1}(y)$, then there is a point $z\in M^n$ such that $\lambda_k(z)=\lambda_{k+1}(z)$. If the manifold is closed and all the common eigenvalues of the metrics are pairwise distinct at each point, then the manifold can be covered by the torus.
@article{MZM_2005_77_3_a7,
     author = {V. S. Matveev},
     title = {The eigenvalues of the {Sinyukov} mapping for geodesically equivalent metrics are globally ordered},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--423},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/}
}
TY  - JOUR
AU  - V. S. Matveev
TI  - The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered
JO  - Matematičeskie zametki
PY  - 2005
SP  - 412
EP  - 423
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/
LA  - ru
ID  - MZM_2005_77_3_a7
ER  - 
%0 Journal Article
%A V. S. Matveev
%T The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered
%J Matematičeskie zametki
%D 2005
%P 412-423
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/
%G ru
%F MZM_2005_77_3_a7
V. S. Matveev. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 412-423. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a7/

[1] Mikesh I., “Geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Geometriya–2, Itogi nauki i tekhniki. Sovremennaya matem. i ee prilozh., 11, VINITI, M., 2002, 121–162 | MR | Zbl

[2] Sinyukov N. S., “K teorii geodezicheskikh otobrazhenii”, Dokl. AN SSSR, 169 (1966), 770–772 | Zbl

[3] Matveev V. S., Topalov P. J., “Quantum integrability of the Beltrami–Laplace operator as geodesic equivalence”, Math. Z., 238:4 (2001), 833–866 | DOI | Zbl

[4] Matveev V. S., Topalov P. I., “Geodezicheskaya ekvivalentnost metrik na poverkhnostyakh kak integriruemost ikh geodezicheskikh potokov”, Dokl. RAN, 367:6 (1999), 736–738 | Zbl

[5] Bolsinov A. V., Fomenko A. T., “Rimanovy metriki s integriruemymi geodezicheskimi potokami na poverkhnostyakh: lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | Zbl

[6] Igarashi M., Kiyohara K., Sugahara K., “Noncompact Liouville surfaces”, J. Math. Soc. Japan, 45:3 (1993), 460–479 | DOI

[7] Matveev V. S., “Geschlossene hyperbolische $3$-Mannigfaltigkeiten sind geodätsich starr”, Manuscripta Math., 105:3 (2001), 343–352 | DOI | Zbl

[8] Matveev V. S., “Three-manifolds admitting metrics with the same geodesics”, Math. Res. Lett., 9:2–3 (2002), 267–276 | Zbl

[9] Matveev V. S., “Low-dimensional manifolds admitting metrics with the same geodesics”, Contemporary Mathematics, 308, 2002, 229–243 | Zbl

[10] Matveev V. S., Topalov P. J., “Trajectory equivalence and corresponding integrals”, Regular and Chaotic Dynamics, 3 (1998), 29–44 | DOI

[11] Matveev V. S., Topalov P. J., “Geodesic equivalence via integrability”, Geometriae Dedicata, 96 (2003), 91–115 | DOI | Zbl

[12] Bolsinov A. V., Fomenko A. T., Matveev V. S., Riemannian metrics with integrable geodesic flows on surfaces: local and global geometry, Max-Planck-Institute for Mathematics Preprint Series No. 120, MPIM, Bonn, 1998

[13] Topalov P. J., Matveev V. S., Geodesic equivalence and integrability, Max-Planck-Institute for Mathematics Preprint Series No. 74, MPIM, Bonn, 1998

[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979