Cauchy problem for $\{\vec p;\vec h\}$-parabolic equations with time-dependent coefficients
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 395-411
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish the existence of a unique solution continuously depending on the initial data to the Cauchy problem for $\{\vec p;\vec h\}$-parabolic equations with time-dependent coefficients for which the initial data are generalized functions (distributions) of slow growth. For a particular class of equations, we state necessary and sufficient conditions for the existence of a unique solution of the Cauchy problem with properties of its spatial variable which are characteristic of its fundamental solution.
@article{MZM_2005_77_3_a6,
author = {V. A. Litovchenko},
title = {Cauchy problem for $\{\vec p;\vec h\}$-parabolic equations with time-dependent coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {395--411},
year = {2005},
volume = {77},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a6/}
}
V. A. Litovchenko. Cauchy problem for $\{\vec p;\vec h\}$-parabolic equations with time-dependent coefficients. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 395-411. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a6/
[1] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR
[2] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR
[3] Gorodetskii V. V., Zhitaryuk I. V., “O skorosti lokalizatsii reshenii zadachi Koshi dlya uravnenii parabolicheskogo tipa s vyrozhdeniem”, Differents. uravneniya, 27:4 (1991), 697–699 | MR
[4] Borok V. M., “Reshenie zadachi Koshi dlya nekotorykh tipov sistem lineinykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 97:6 (1984), 949–952