On the $H$-property of functionals in Sobolev spaces
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 378-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider special classes of strongly convex functionals in Sobolev spaces. It is proved that functionals from such classes have the so-called $H$-property: weak convergence of sequences of arguments and convergence of such sequences with respect to a given functional imply strong convergence.
@article{MZM_2005_77_3_a5,
     author = {A. S. Leonov},
     title = {On the $H$-property of functionals in {Sobolev} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {378--394},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On the $H$-property of functionals in Sobolev spaces
JO  - Matematičeskie zametki
PY  - 2005
SP  - 378
EP  - 394
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/
LA  - ru
ID  - MZM_2005_77_3_a5
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On the $H$-property of functionals in Sobolev spaces
%J Matematičeskie zametki
%D 2005
%P 378-394
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/
%G ru
%F MZM_2005_77_3_a5
A. S. Leonov. On the $H$-property of functionals in Sobolev spaces. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 378-394. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/

[1] Diestel J., Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–Heidelberg, 1975 | Zbl

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl

[3] Leonov A. S., “Obobschenie metoda maksimalnoi entropii dlya resheniya nekorrektnykh zadach”, Sib. matem. zh., 41:4 (2000), 863–872 | Zbl

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980

[5] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956

[6] Funktsionalnyi analiz, Seriya SMB, ed. Krein S. G., Nauka, M., 1972

[7] Amato U., Hughes W., “Maximum entropy regularization of Fredholm integral equations of the first kind”, Inverse Problems, 7 (1991), 793–808 | DOI | Zbl

[8] Eggermont P. P. B., “Maximum entropy regularization for Fredholm integral equations of the first kind”, SIAM J. Math. Anal., 24:6 (1993), 1557–1576 | DOI | Zbl