Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_3_a5, author = {A. S. Leonov}, title = {On the $H$-property of functionals in {Sobolev} spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {378--394}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/} }
A. S. Leonov. On the $H$-property of functionals in Sobolev spaces. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 378-394. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/
[1] Diestel J., Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–Heidelberg, 1975 | Zbl
[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl
[3] Leonov A. S., “Obobschenie metoda maksimalnoi entropii dlya resheniya nekorrektnykh zadach”, Sib. matem. zh., 41:4 (2000), 863–872 | Zbl
[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980
[5] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956
[6] Funktsionalnyi analiz, Seriya SMB, ed. Krein S. G., Nauka, M., 1972
[7] Amato U., Hughes W., “Maximum entropy regularization of Fredholm integral equations of the first kind”, Inverse Problems, 7 (1991), 793–808 | DOI | Zbl
[8] Eggermont P. P. B., “Maximum entropy regularization for Fredholm integral equations of the first kind”, SIAM J. Math. Anal., 24:6 (1993), 1557–1576 | DOI | Zbl