On the $H$-property of functionals in Sobolev spaces
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 378-394
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider special classes of strongly convex functionals in Sobolev spaces. It is proved that functionals from such classes have the so-called $H$-property: weak convergence of sequences of arguments and convergence of such sequences with respect to a given functional imply strong convergence.
@article{MZM_2005_77_3_a5,
author = {A. S. Leonov},
title = {On the $H$-property of functionals in {Sobolev} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {378--394},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/}
}
A. S. Leonov. On the $H$-property of functionals in Sobolev spaces. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 378-394. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a5/