On the singularities of the gradient of the solution to the Dirichlet--Neumann problem outside a~plane cut
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 364-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem considered in this paper deals with the Laplace equation outside a cut of sufficiently arbitrary form. The Dirichlet condition is given on one side of the cut and the Neumann condition on the other. Using the integral representation for the solution, we obtain explicit asymptotic formulas describing the singularity of the gradient of the solution at the edges of the cut. We discuss the effect of the disappearance of the singularity.
@article{MZM_2005_77_3_a4,
     author = {P. A. Krutitskii and A. I. Sgibnev},
     title = {On the singularities of the gradient of the solution to the {Dirichlet--Neumann} problem outside a~plane cut},
     journal = {Matemati\v{c}eskie zametki},
     pages = {364--377},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a4/}
}
TY  - JOUR
AU  - P. A. Krutitskii
AU  - A. I. Sgibnev
TI  - On the singularities of the gradient of the solution to the Dirichlet--Neumann problem outside a~plane cut
JO  - Matematičeskie zametki
PY  - 2005
SP  - 364
EP  - 377
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a4/
LA  - ru
ID  - MZM_2005_77_3_a4
ER  - 
%0 Journal Article
%A P. A. Krutitskii
%A A. I. Sgibnev
%T On the singularities of the gradient of the solution to the Dirichlet--Neumann problem outside a~plane cut
%J Matematičeskie zametki
%D 2005
%P 364-377
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a4/
%G ru
%F MZM_2005_77_3_a4
P. A. Krutitskii; A. I. Sgibnev. On the singularities of the gradient of the solution to the Dirichlet--Neumann problem outside a~plane cut. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 364-377. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a4/

[1] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, URSS, M., 1967, 209–292

[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991 | MR

[3] Krutitskii P. A., “Zadacha Dirikhle dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVMiMF, 34:8–9 (1994), 1237–1258 | MR

[4] Krutitskii P. A., “Zadacha Neimana dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVMiMF, 34:11 (1994), 1652–1665 | MR

[5] Krutitskii P. A., Sgibnev A. I., “Metod integralnykh uravnenii v smeshannoi zadache Dirikhle–Neimana dlya uravneniya Laplasa vne razrezov na ploskosti”, Differents. uravneniya, 37:10 (2001), 1299–1310 | Zbl

[6] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995 | MR | Zbl

[7] Gabov S. A., “Uglovoi potentsial i ego nekotorye prilozheniya”, Matem. sb., 103 (145):4 (1977), 490–504 | MR | Zbl

[8] Krutitskii P. A., “An initial-boundary value problem for the pseudo-hyperbolic equation of gravity-gyroscopic waves”, J. Math. Kyoto Univ., 37:2 (1997), 343–365 | MR

[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | Zbl

[10] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984

[11] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | Zbl