Approximation by local trigonometric splines
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 354-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class $W_\infty^{\mathscr L_2}=\{f:f'\in AC,\ \|f''+\alpha^2f\|_\infty\leqslant1\}$ of 1-periodic functions, we use the linear noninterpolating method of trigonometric spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data, i.e., the values of a function from $W_\infty^{\mathscr L_2}$ at the points of a uniform grid. The approximation error is calculated exactly for this class of functions in the uniform metric. It coincides with the Kolmogorov and Konovalov widths.
@article{MZM_2005_77_3_a3,
     author = {K. V. Kostousov and V. T. Shevaldin},
     title = {Approximation by local trigonometric splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {354--363},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a3/}
}
TY  - JOUR
AU  - K. V. Kostousov
AU  - V. T. Shevaldin
TI  - Approximation by local trigonometric splines
JO  - Matematičeskie zametki
PY  - 2005
SP  - 354
EP  - 363
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a3/
LA  - ru
ID  - MZM_2005_77_3_a3
ER  - 
%0 Journal Article
%A K. V. Kostousov
%A V. T. Shevaldin
%T Approximation by local trigonometric splines
%J Matematičeskie zametki
%D 2005
%P 354-363
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a3/
%G ru
%F MZM_2005_77_3_a3
K. V. Kostousov; V. T. Shevaldin. Approximation by local trigonometric splines. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 354-363. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a3/

[1] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, ZhVMiMF, 33:7 (1993), 996–1003 | Zbl

[2] Subbotin Yu. N., Chernykh N. I., “Poryadok nailuchshei splain-approksimatsii nekotorykh klassov funktsii”, Matem. zametki, 7:1 (1970), 31–42 | Zbl

[3] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | Zbl

[4] Shevaldin V. T., Istokoobraznye splainy i poperechniki klassov periodicheskikh funktsii, Diss. $\dots$ d. f.-m. n., IMM UrO RAN, Ekaterinburg, 1996

[5] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4, 5 (1938), 603–607

[6] Shevaldin V. T., “$L$-splainy i poperechniki”, Matem. zametki, 33:5 (1983), 735–744 | Zbl

[7] Novikov S. I., “Priblizhenie klassa $W_\infty^{\mathscr L_n}$ interpolyatsionnymi periodicheskimi splainami”, Priblizhenie funktsii polinomami i splainami, UNTs AN SSSR, Sverdlovsk, 1985, 118–126

[8] Volodina I. N., “Exact value of widths of certain class of solutions of linear differential equations”, Analysis Math., 11:1 (1985), 85–92 | DOI | Zbl

[9] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN, 164, Nauka, M., 1983, 203–240 | Zbl

[10] Subbotin Yu. N., Telyakovskii S. A., “Asimptotika konstant Lebega dlya periodicheskikh interpolyatsionnykh splainov s ravnomernymi uzlami”, Matem. sb., 191:8 (2000), 131–140 | Zbl

[11] Subbotin Yu. N., Telyakovskii S. A., “Splines and relative widths of classes of differentiable functions”, Proc. of the Steklov Institute of Math., Suppl. 1, 2001, 225–234