Existence of solutions of parabolic variational inequalities with one-sided restrictions
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove sufficient conditions for the existence of a solution of a “strong” nonlinear variational inequality of parabolic type. The theory can be used for solving parabolic equations with one-sided boundary conditions. As an example, we prove the existence of a solution of a strong parabolic variational inequality with $p$-Laplacian in the Sobolev space $L_p(0,T;W_p^1(\Omega))$, $p\in[2,\infty)$.
@article{MZM_2005_77_3_a11,
     author = {O. V. Solonukha},
     title = {Existence of solutions of parabolic variational inequalities with one-sided restrictions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {460--476},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - Existence of solutions of parabolic variational inequalities with one-sided restrictions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 460
EP  - 476
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/
LA  - ru
ID  - MZM_2005_77_3_a11
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T Existence of solutions of parabolic variational inequalities with one-sided restrictions
%J Matematičeskie zametki
%D 2005
%P 460-476
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/
%G ru
%F MZM_2005_77_3_a11
O. V. Solonukha. Existence of solutions of parabolic variational inequalities with one-sided restrictions. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[2] Lions J. L., Stampacchia G., “Variational Inequalities”, Comm. Pure Appl. Math., 20 (1967), 493–519 | DOI | MR | Zbl

[3] Brésis H., “Équations et inéquations non linéaires dans les espaces vectoriels en dualitè”, Ann. Inst. Fourier (Grenoble), 18 (1968), 115–175 | MR

[4] Barbu V., Analysis and Control of Non-Linear Infinite Dimensional Systems, Acad. Press, Boston, 1993 | MR

[5] Babický V., “Destabilization for quazivariational inequalities of reaction–diffusion type”, Appl. Math., 45:3 (2000), 161–176 | DOI | MR | Zbl

[6] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, M., 1976, 5–130

[7] Melnik V. S., Zgurovskii M. Z., Nelineinyi analiz i upravlenie beskonechnomernymi sistemami, Naukova dumka, Kiev, 1999 | Zbl

[8] Browder F. E., Hess P., “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11:2 (1972), 251–294 | DOI | MR | Zbl

[9] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990

[10] Solonoukha O. V., “On the stationary variational inequalities with the generalized pseudomonotone operators”, Methods Funct. Anal. Topology, 3:4 (1997), 81–95 | Zbl

[11] Solonukha O. V., “On solvability of monotone type problems with non-coercive set-valued operators”, Methods Funct. Anal. Topology, 6:1 (2000), 66–72 | Zbl

[12] Laptev G. I., “Pervaya kraevaya zadacha dlya kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka s dvoinym vyrozhdeniem”, Differents. uravneniya, 30:6 (1994), 1057–1068 | Zbl

[13] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatorno-differentsialnye uravneniya, Mir, M., 1978