Existence of solutions of parabolic variational inequalities with one-sided restrictions
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove sufficient conditions for the existence of a solution of a “strong” nonlinear variational inequality of parabolic type. The theory can be used for solving parabolic equations with one-sided boundary conditions. As an example, we prove the existence of a solution of a strong parabolic variational inequality with $p$-Laplacian in the Sobolev space $L_p(0,T;W_p^1(\Omega))$, $p\in[2,\infty)$.
@article{MZM_2005_77_3_a11,
     author = {O. V. Solonukha},
     title = {Existence of solutions of parabolic variational inequalities with one-sided restrictions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {460--476},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - Existence of solutions of parabolic variational inequalities with one-sided restrictions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 460
EP  - 476
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/
LA  - ru
ID  - MZM_2005_77_3_a11
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T Existence of solutions of parabolic variational inequalities with one-sided restrictions
%J Matematičeskie zametki
%D 2005
%P 460-476
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/
%G ru
%F MZM_2005_77_3_a11
O. V. Solonukha. Existence of solutions of parabolic variational inequalities with one-sided restrictions. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/