Existence of solutions of parabolic variational inequalities with one-sided restrictions
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove sufficient conditions for the existence of a solution of a “strong” nonlinear variational inequality of parabolic type. The theory can be used for solving parabolic equations with one-sided boundary conditions. As an example, we prove the existence of a solution of a strong parabolic variational inequality with $p$-Laplacian in the Sobolev space $L_p(0,T;W_p^1(\Omega))$, $p\in[2,\infty)$.
@article{MZM_2005_77_3_a11,
author = {O. V. Solonukha},
title = {Existence of solutions of parabolic variational inequalities with one-sided restrictions},
journal = {Matemati\v{c}eskie zametki},
pages = {460--476},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/}
}
TY - JOUR AU - O. V. Solonukha TI - Existence of solutions of parabolic variational inequalities with one-sided restrictions JO - Matematičeskie zametki PY - 2005 SP - 460 EP - 476 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/ LA - ru ID - MZM_2005_77_3_a11 ER -
O. V. Solonukha. Existence of solutions of parabolic variational inequalities with one-sided restrictions. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 460-476. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a11/