On graphs and Lie rings
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 449-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

From a finite oriented graph $\Gamma$, finite-dimensional graded nilpotent Lie rings $\mathfrak l(\Gamma)$ and $\mathfrak g(\Gamma)$ are naturally constructed; these rings are related to subtrees and connected subgraphs of $\Gamma$, respectively. Diverse versions of these constructions are also suggested. Moreover, an embedding of Lie rings of the form $\mathfrak l(\Gamma)$ in the adjoint Lie rings of finite-dimensional associative rings (also determined by the graph $\Gamma$) is indicated.
@article{MZM_2005_77_3_a10,
     author = {Yu. S. Semenov},
     title = {On graphs and {Lie} rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {449--459},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/}
}
TY  - JOUR
AU  - Yu. S. Semenov
TI  - On graphs and Lie rings
JO  - Matematičeskie zametki
PY  - 2005
SP  - 449
EP  - 459
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/
LA  - ru
ID  - MZM_2005_77_3_a10
ER  - 
%0 Journal Article
%A Yu. S. Semenov
%T On graphs and Lie rings
%J Matematičeskie zametki
%D 2005
%P 449-459
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/
%G ru
%F MZM_2005_77_3_a10
Yu. S. Semenov. On graphs and Lie rings. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 449-459. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/

[1] Kuzmin Yu. V., Semenov Yu. S., “O gomologiyakh svobodnoi nilpotentnoi gruppy klassa $2$”, Matem. sb., 189:4 (1998), 49–82

[2] Cayley A., Collected Mathematical Papers, 1889–1897, Cambridge Univ. Press, Cambridge

[3] Clarke L. E., “On Cayley's formula for counting trees”, J. London Math. Soc., 33 (1958), 471–474 | DOI | Zbl

[4] Moon J. W., “Another proof of Cayley's formula for counting trees”, Amer. Math. Monthly, 70 (1963), 846–847 | DOI | Zbl