On graphs and Lie rings
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 449-459
Cet article a éte moissonné depuis la source Math-Net.Ru
From a finite oriented graph $\Gamma$, finite-dimensional graded nilpotent Lie rings $\mathfrak l(\Gamma)$ and $\mathfrak g(\Gamma)$ are naturally constructed; these rings are related to subtrees and connected subgraphs of $\Gamma$, respectively. Diverse versions of these constructions are also suggested. Moreover, an embedding of Lie rings of the form $\mathfrak l(\Gamma)$ in the adjoint Lie rings of finite-dimensional associative rings (also determined by the graph $\Gamma$) is indicated.
@article{MZM_2005_77_3_a10,
author = {Yu. S. Semenov},
title = {On graphs and {Lie} rings},
journal = {Matemati\v{c}eskie zametki},
pages = {449--459},
year = {2005},
volume = {77},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/}
}
Yu. S. Semenov. On graphs and Lie rings. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 449-459. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a10/
[1] Kuzmin Yu. V., Semenov Yu. S., “O gomologiyakh svobodnoi nilpotentnoi gruppy klassa $2$”, Matem. sb., 189:4 (1998), 49–82
[2] Cayley A., Collected Mathematical Papers, 1889–1897, Cambridge Univ. Press, Cambridge
[3] Clarke L. E., “On Cayley's formula for counting trees”, J. London Math. Soc., 33 (1958), 471–474 | DOI | Zbl
[4] Moon J. W., “Another proof of Cayley's formula for counting trees”, Amer. Math. Monthly, 70 (1963), 846–847 | DOI | Zbl