Canonical form of Tarski sets in Zermelo–Fränkel set theory
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 323-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the equivalence of the notions of an inaccessible cumulative set and uncountable Tarski set. In addition, the equivalence of these notions and that of a galactic set is proved.
@article{MZM_2005_77_3_a0,
     author = {E. I. Bunina and V. K. Zakharov},
     title = {Canonical form of {Tarski} sets in {Zermelo{\textendash}Fr\"ankel} set theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--333},
     year = {2005},
     volume = {77},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - V. K. Zakharov
TI  - Canonical form of Tarski sets in Zermelo–Fränkel set theory
JO  - Matematičeskie zametki
PY  - 2005
SP  - 323
EP  - 333
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/
LA  - ru
ID  - MZM_2005_77_3_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%A V. K. Zakharov
%T Canonical form of Tarski sets in Zermelo–Fränkel set theory
%J Matematičeskie zametki
%D 2005
%P 323-333
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/
%G ru
%F MZM_2005_77_3_a0
E. I. Bunina; V. K. Zakharov. Canonical form of Tarski sets in Zermelo–Fränkel set theory. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/

[1] Mirimanov D., “Les antinomies de Russell et de Burali–Forti et le probléme fondamental de la théorie des ensembles”, L'Enseignment Math., 19 (1917), 37–52

[2] von Neumann J., “Über eine Widerspruchsfreiheit-sfrage in der axiomatischen Mengenlehre”, J. Reine Angew. Math., 160 (1929), 227–241

[3] Zermelo E., “Über Grenzzahlen und Mengenbereiche”, Fund. Math., 16 (1930), 29–47

[4] Sierpiński W., Tarski A., “Sur une propriété caractéristique des nombres inaccessibles”, Fund. Math., 15 (1930), 292–300

[5] Shepherdson J., “Inner models for set theory. I; II; III”, J. Symbolic Logic, 16 (1951), 161–190 ; 17 (1952), 225–237 ; 18 (1953), 145–167 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[6] Tarski A., “Über unerreichbare Kardinalzahlen”, Fund. Math., 30 (1938), 68–89 | Zbl

[7] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970

[8] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[9] Jech T., Set Theory, Springer, Berlin, 2003 | MR | Zbl

[10] Goldblatt R., Toposy. Kategornyi analiz logiki, Mir, M., 1983 | Zbl

[11] MacLane S., Categories for the Working Mathematician, Springer-Verlag, Berlin, 1971 | Zbl

[12] Forster T., Set Theory with a Universal Set, Oxford Univ. Press, New York, 1995 | Zbl

[13] Holmes M. R., Elementary Set Theory with a Universal Set, Academia Btuylant, Louvain-la-Neuve, 1998 | Zbl