Canonical form of Tarski sets in Zermelo--Fr\"ankel set theory
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 323-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the equivalence of the notions of an inaccessible cumulative set and uncountable Tarski set. In addition, the equivalence of these notions and that of a galactic set is proved.
@article{MZM_2005_77_3_a0,
     author = {E. I. Bunina and V. K. Zakharov},
     title = {Canonical form of {Tarski} sets in {Zermelo--Fr\"ankel} set theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - V. K. Zakharov
TI  - Canonical form of Tarski sets in Zermelo--Fr\"ankel set theory
JO  - Matematičeskie zametki
PY  - 2005
SP  - 323
EP  - 333
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/
LA  - ru
ID  - MZM_2005_77_3_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%A V. K. Zakharov
%T Canonical form of Tarski sets in Zermelo--Fr\"ankel set theory
%J Matematičeskie zametki
%D 2005
%P 323-333
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/
%G ru
%F MZM_2005_77_3_a0
E. I. Bunina; V. K. Zakharov. Canonical form of Tarski sets in Zermelo--Fr\"ankel set theory. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a0/

[1] Mirimanov D., “Les antinomies de Russell et de Burali–Forti et le probléme fondamental de la théorie des ensembles”, L'Enseignment Math., 19 (1917), 37–52

[2] von Neumann J., “Über eine Widerspruchsfreiheit-sfrage in der axiomatischen Mengenlehre”, J. Reine Angew. Math., 160 (1929), 227–241

[3] Zermelo E., “Über Grenzzahlen und Mengenbereiche”, Fund. Math., 16 (1930), 29–47

[4] Sierpiński W., Tarski A., “Sur une propriété caractéristique des nombres inaccessibles”, Fund. Math., 15 (1930), 292–300

[5] Shepherdson J., “Inner models for set theory. I; II; III”, J. Symbolic Logic, 16 (1951), 161–190 ; 17 (1952), 225–237 ; 18 (1953), 145–167 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[6] Tarski A., “Über unerreichbare Kardinalzahlen”, Fund. Math., 30 (1938), 68–89 | Zbl

[7] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970

[8] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[9] Jech T., Set Theory, Springer, Berlin, 2003 | MR | Zbl

[10] Goldblatt R., Toposy. Kategornyi analiz logiki, Mir, M., 1983 | Zbl

[11] MacLane S., Categories for the Working Mathematician, Springer-Verlag, Berlin, 1971 | Zbl

[12] Forster T., Set Theory with a Universal Set, Oxford Univ. Press, New York, 1995 | Zbl

[13] Holmes M. R., Elementary Set Theory with a Universal Set, Academia Btuylant, Louvain-la-Neuve, 1998 | Zbl