Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 273-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space $E$, we consider the inverse problem $du(t)/dt=Au(t)+\phi(t)p$, $u(0)=u_0$, $u(T)=u_1$, with an unknown function $u(t)$ and an element $p\in E$. The operator $A$ is assumed linear and closed. In this paper, we establish minimal constraints on the function $\phi\in C([0,T])$ for which the uniqueness of the solution of the inverse problem is completely described in terms of the eigenvalues of the operator $A$.
@article{MZM_2005_77_2_a8,
     author = {I. V. Tikhonov and Yu. S. \`Eidel'man},
     title = {Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--290},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a8/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - Yu. S. Èidel'man
TI  - Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term
JO  - Matematičeskie zametki
PY  - 2005
SP  - 273
EP  - 290
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a8/
LA  - ru
ID  - MZM_2005_77_2_a8
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A Yu. S. Èidel'man
%T Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term
%J Matematičeskie zametki
%D 2005
%P 273-290
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a8/
%G ru
%F MZM_2005_77_2_a8
I. V. Tikhonov; Yu. S. Èidel'man. Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 273-290. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a8/

[1] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl

[2] Iskenderov A. D., “Nekotorye obratnye zadachi ob opredelenii pravykh chastei differentsialnykh uravnenii”, Izv. AN Azerb. SSR. Ser. fiz.-tekhn. i matem. nauk., 1976, no. 2, 58–63 | Zbl

[3] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[4] Orlovskii D. G., “K zadache opredeleniya parametra evolyutsionnogo uravneniya”, Differents. uravneniya, 26:9 (1990), 1614–1621

[5] Rundell W., “Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10:3 (1980), 231–242 | DOI | Zbl

[6] Eidelman Yu. S., “Edinstvennost resheniya obratnoi zadachi dlya differentsialnogo uravneniya v banakhovom prostranstve”, Differents. uravneniya, 23:9 (1987), 1647–1649

[7] Eidelman Yu. S., “Odna obratnaya zadacha dlya evolyutsionnogo uravneniya”, Matem. zametki, 49:5 (1991), 135–141

[8] Eidelman Y. S., “Conditions of existence and uniqueness of solution of inverse problem for the evolutionary equation”, Dokl. AN Ukrainy, 1992, no. 8, 8–11

[9] Tikhonov I. V., Eidelman Yu. S., “Voprosy korrektnosti pryamykh i obratnykh zadach dlya evolyutsionnogo uravneniya spetsialnogo vida”, Matem. zametki, 56:2 (1994), 99–113 | Zbl

[10] Anikonov Yu. E., Vishnevskii M. P., “Formuly v obratnoi zadache dlya evolyutsionnogo uravneniya”, Sib. matem. zh., 37:5 (1996), 963–976 | Zbl

[11] Ayupova N. B., Golubyatnikov V. P., “O formalnykh resheniyakh mnogomernykh evolyutsionnykh uravnenii”, Matem. trudy, 1, no. 2, IM SO RAN, Novosibirsk, 1998, 3–23

[12] Tikhonov I. V., Eidelman Yu. S., “Edinstvennost resheniya dvukhtochechnoi obratnoi zadachi dlya abstraktnogo differentsialnogo uravneniya s neizvestnym parametrom”, Differents. uravneniya, 36:8 (2000), 1132–1133 | Zbl

[13] Tikhonov I. V., Eidelman Yu. S., “Obratnaya zadacha dlya differentsialnogo uravneniya v banakhovom prostranstve i raspredelenie nulei tseloi funktsii tipa Mittag-Lefflera”, Differents. uravneniya, 38:5 (2002), 637–644 | Zbl

[14] Tikhonov I. V., “Soobrazheniya monotonnosti v obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya”, Integralnye preobrazovaniya i spets. funktsii. Inform. byull., 2:1 (2001), 119–128

[15] Leontev A. F., Ryady eksponent, Nauka, M., 1976

[16] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[17] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[18] Lyubich Yu. I., “O sobstvennykh i prisoedinennykh funktsiyakh operatora differentsirovaniya”, Izv. vuzov. Matem., 1959, no. 4, 94–103 | Zbl

[19] Titchmarsh E. C., “The zeros of certain integral functions”, Proc. London Math. Soc., 25:4 (1926), 283–302 | DOI

[20] Fedoryuk M. V., Metod perevala, Nauka, M., 1977

[21] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[22] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[23] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216

[24] Midzokhota S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[25] Lyubich Yu. I., Tkachenko V. A., “Teoriya i nekotorye primeneniya lokalnogo preobrazovaniya Laplasa”, Matem. sb., 70:3 (1966), 416–437 | Zbl